Skip to main content
Log in

A generalization of the Riemann–Siegel formula

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The celebrated Riemann–Siegel formula compares the Riemann zeta function on the critical line with its partial sums, expressing the difference between them as an expansion in terms of decreasing powers of the imaginary variable t. Siegel anticipated that this formula could be generalized to include the Hardy–Littlewood approximate functional equation, valid in any vertical strip. We give this generalization for the first time. The asymptotics contain Mordell integrals and an interesting new family of polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arias de Reyna, J.: High precision computation of Riemann’s zeta function by the Riemann–Siegel formula. I. Math. Comput. 80(274), 995–1009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barkan, E., Sklar, D.: On Riemann’s nachlass for analytic number theory. arXiv:1810.05198 (2018)

  3. Berry, M.V.: The Riemann–Siegel expansion for the zeta function: high orders and remainders. Proc. R. Soc. Lond. Ser. A 450(1939), 439–462 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bober, J.W., Hiary, G.A.: New computations of the Riemann zeta function on the critical line. Exp. Math. 27(2), 125–137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brent, R.P.: On the zeros of the Riemann zeta function in the critical strip. Math. Comput. 33(148), 1361–1372 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass forms and mock modular forms: theory and applications. American Mathematical Society Colloquium Publications, vol. 64. American Mathematical Society, Providence (2017)

    Book  MATH  Google Scholar 

  7. Chern, B., Rhoades, R.C.: The Mordell integral, quantum modular forms, and mock Jacobi forms. Res. Number Theory 1, Art. 1, 14 (2015)

  8. Deuring, M.: Asymptotische Entwicklungen der Dirichletschen \(L\)-Reihen. Math. Ann. 168, 1–30 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dixit, A., Roy, A., Zaharescu, A.: Error functions, Mordell integrals and an integral analogue of a partial theta function. Acta Arith. 177(1), 1–37 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edwards, H.M.: Riemann’s Zeta Function. Pure and Applied Mathematics, vol. 58. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1974)

    Google Scholar 

  11. Feng, S.-J.: On a mean value formula for the approximate functional equation of \(\zeta (s)\) in the critical strip. J. Math. Soc. Jpn. 57(2), 513–521 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fokas, A.S., Lenells, J.: On the asymptotics to all orders of the Riemann zeta function and of a two-parameter generalization of the Riemann zeta function. Mem. Am. Math. Soc. 275(1351), vii+114 (2022)

  13. Gabcke, W.: Neue Herleitung und explizite Restabschätzung der Riemann-Siegel Formel. PhD thesis, Georg-August-Universität zu Göttingen (1979)

  14. Gonek, S.M., Montgomery, H.L.: Zeros of a family of approximations of the Riemann zeta-function. Int. Math. Res. Not. IMRN 20, 4712–4733 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gourdon, X.: The \(10^{13}\) first zeros of the Riemann zeta function and zero computation at very large heights. Online document (2004)

  16. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  17. Hardy, G.H., Littlewood, J.E.: The approximate functional equation in the theory of the zeta-function, with applications to the divisor-problems of Dirichlet and Piltz. Proc. Lond. Math. Soc. 2(21), 39–74 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ivić, A.: The Riemann zeta-function. A Wiley-Interscience Publication. Wiley, New York (1985). The theory of the Riemann zeta-function with applications

  19. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)

    Google Scholar 

  20. Mordell, L.J.: The definite integral \(\int \limits _{-\infty }^\infty {\tfrac{{e^{ax^2 + bx} }}{{e^{cx} + d}}dx}\) and the analytic theory of numbers. Acta Math. 61(1), 323–360 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nemes, G.: Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7(1), 161–179 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Odlyzko, A.M., Schönhage, A.: Fast algorithms for multiple evaluations of the Riemann zeta function. Trans. Am. Math. Soc. 309(2), 797–809 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1974). Computer Science and Applied Mathematics

  24. O’Sullivan, C.: De Moivre and Bell polynomials. Expo. Math. (to appear). arXiv:2203.02868

  25. O’Sullivan, C.: Revisiting the saddle-point method of Perron. Pac. J. Math. 298(1), 157–199 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Petrova, S.S., Solov’ev, A.D.: The origin of the method of steepest descent. Hist. Math. 24(4), 361–375 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Platt, D.J., Trudgian, T.S.: An improved explicit bound on \(|\zeta (\frac{1}{2}+it)|\). J. Number Theory 147, 842–851 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Polymath, D.H.J.: Effective approximation of heat flow evolution of the Riemann function, and a new upper bound for the de Bruijn–Newman constant. Res. Math. Sci. 6(3), Paper No. 31, 67 (2019)

  29. Siegel, C.L.: Über Riemanns Nachlaß zur analytischen Zahlentheorie. Quellen Studien Geschichte der Math. Astron. und Phys. Abt. B: Studien 2, 45–80 (1932). Reprinted in C. L. Siegel, Gesammelte Abhandlungen, vol. 1. Springer 1966, 275–310

  30. Siegel, C.L.: Contributions to the theory of the Dirichlet \(L\)-series and the Epstein zeta-functions. Ann. Math. 2(44), 143–172 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  31. Soundararajan, K.: Moments of the Riemann zeta function. Ann. Math. (2) 170(2), 981–993 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. The Clarendon Press, Oxford University Press, New York (1986). Edited and with a preface by D. R. Heath-Brown

  33. Zwegers, S.: Mock theta functions. PhD thesis, Universiteit Utrecht (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac O’Sullivan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Support for this project was provided by a PSC-CUNY Award, jointly funded by The Professional Staff Congress and The City University of New York.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Sullivan, C. A generalization of the Riemann–Siegel formula. Math. Z. 303, 20 (2023). https://doi.org/10.1007/s00209-022-03164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03164-8

Mathematics Subject Classification

Navigation