Skip to main content

Local bounds for singular Brascamp–Lieb forms with cubical structure

Abstract

We prove a range of \(L^p\) bounds for singular Brascamp–Lieb forms with cubical structure. We pass through sparse and local bounds, the latter proved by an iteration of Fourier expansion, telescoping, and the Cauchy–Schwarz inequality. We allow \(2^{m-1}<p\le \infty \) with m the dimension of the cube, extending an earlier result that required \(p=2^m\). The threshold \(2^{m-1}\) is sharp in our theorems.

This is a preview of subscription content, access via your institution.

References

  1. Barron, A., Conde-Alonso, J.M., Ou, Y., Rey, G.: Sparse domination and the strong maximal function. Adv. Math. 345, 1–26 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benea, C., Muscalu, C.: Mixed-norm estimates via the helicoidal method. arXiv:2007.01080 (2020)

  3. Culiuc, A., Di Plinio, F., Ou, Y.: Domination of multilinear singular integrals by positive sparse forms. J. Lond. Math. Soc. (2) 98(2), 369–392 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  4. Do, Y., Thiele, C.: \(L^p\) theory for outer measures and two themes of Lennart Carleson united. Bull. Am. Math. Soc. (N.S.) 52(2), 249–296 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  5. Durcik, P.: \(L^p\) estimates for a singular entangled quadrilinear form. Trans. Am. Math. Soc. 369(10), 6935–6951 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  6. Durcik, P., Kovač, V., Rimanić, L.: On side lengths of corners in positive density subsets of the Euclidean space. Int. Math. Res. Not. 22, 6844–6869 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  7. Durcik, P., Kovač, V.: A Szemerédi type theorem for subsets of the unit cube. Anal. PDE 15(2), 507–549 (2022)

    Article  MATH  MathSciNet  Google Scholar 

  8. Durcik, P., Kovač, V., Škreb, K.A., Thiele, C.: Norm variation of ergodic averages with respect to two commuting transformations. Ergodic Theory Dyn. Syst. 39(3), 658–688 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  9. Durcik, P., Roos, J.: Averages of simplex Hilbert transforms. Proc. Am. Math. Soc. 149(2), 633–647 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  10. Durcik, P., Thiele, C.: Singular Brascamp–Lieb inequalities with cubical structure. Bull. Lond. Math. Soc. 52(2), 283–298 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  11. Durcik, P., Thiele, C.: Singular Brascamp–Lieb: A Survey, Geometric Aspects of Harmonic Analysis. Springer INdAM Series, vol. 45. Springer, New York (2021)

    MATH  Google Scholar 

  12. Kovač, V., Thiele, C., Zorin-Kranich, P.: Dyadic triangular Hilbert transform of two general functions and one not too general function. Forum Math. Sigma 3, e25-27 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kovač, V.: Boundedness of the twisted paraproduct. Rev. Mat. Iberoam. 28(4), 1143–1164 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kovač, V.: Density theorems for anisotropic point configurations. Can. J. Math. to appear. arXiv:2008.01060

  15. Kovač, V., Stipčić, M.: Convergence of ergodic-martingale paraproducts. Stat. Probab. Lett. 164, 108826–6 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, K., Moen, K., Sun, W.: The sharp weighted bound for multilinear maximal functions and Calderón–Zygmund operators. J. Fourier Anal. Appl. 20(4), 751–765 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lerner, A.K., Nazarov, F.: Intuitive dyadic calculus: the basics. Expo. Math. 37(3), 225–265 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  18. Muscalu, C., Zhai, Y.: Five-linear singular integral estimates of Brascamp–Lieb type. (2020). arXiv:2001.09064

  19. Mirek, M., Thiele, C.: A local \(T(b)\) theorem for perfect multilinear Calderón–Zygmund operators. Proc. Lond. Math. Soc. (3) 114(1), 35–59 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nieraeth, Z.: Quantitative estimates and extrapolation for multilinear weight classes. Math. Ann. 375(1–2), 453–507 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  21. Oberlin, R., Thiele, C.: New uniform bounds for a Walsh model of the bilinear Hilbert transform. Indiana Univ. Math. J. 60(5), 1693–1712 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stipčić, M.: \(T(1)\) theorem for dyadic singular integral forms associated with hypergraphs. J. Math. Anal. Appl. 481(2), 123496–27 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zorin-Kranich, P.: \(A_p\)-\(A_\infty \) estimates for multilinear maximal and sparse operators. J. Anal. Math. 138(2), 871–889 (2019)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by NSF DMS-2154356. The second author is supported by the Primus research programme PRIMUS/21/SCI/002 of Charles University. The third author acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy- EXC-2047/1-390685813 as well as SFB 1060. Part of the research was carried out during a delightful workshop on Real and Harmonic Analysis at the Oberwolfach Research Institute for Mathematics. The authors thank the anonymous referee for their careful reading of the paper and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polona Durcik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durcik, P., Slavíková, L. & Thiele, C. Local bounds for singular Brascamp–Lieb forms with cubical structure. Math. Z. 302, 2375–2405 (2022). https://doi.org/10.1007/s00209-022-03148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03148-8

Keywords

  • Multilinear form
  • Singular integral
  • Sparse bounds

Mathematics Subject Classification

  • 42B20