Skip to main content
Log in

On existence and uniqueness of asymptotic N-soliton-like solutions of the nonlinear Klein–Gordon equation

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We are interested in solutions of the nonlinear Klein–Gordon equation (NLKG) in \(\mathbb {R}^{1+d}\), \(d\ge 1\), which behave as a soliton or a sum of solitons in large time. In the spirit of other articles focusing on the supercritical generalized Korteweg-de Vries equations and on the nonlinear Schrödinger equations, we obtain an N-parameter family of solutions of (NLKG) which converges exponentially fast to a sum of N given (unstable) solitons. For \(N=1\), this family completely describes the set of solutions converging to the soliton considered; for \(N\ge 2\), we prove uniqueness in a class with explicit algebraic rate of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellazzani, Jacopo, Ghimenti, Marco, Le Coz, Stefan: Multi-solitary waves for the nonlinear Klein-Gordon equation. Commun. Partial Differ. Equ. 39(8), 1479–1522 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berestycki, H., Lions, P.-L.: Non linear scalar field equations, I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MATH  Google Scholar 

  3. Combet, V.: Construction and characterization of solutions converging to solitons for supercritical gKdV equations. Differ. Integral Equ. 23(5/6), 513–568 (2010). (05)

    MATH  MathSciNet  Google Scholar 

  4. Combet, V.: Multi-soliton solutions for the supercritical gKdV equations. Commun. Partial Differ. Equ. 36, 02 (2010)

    Article  MathSciNet  Google Scholar 

  5. Combet, V.: Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension. Discrete Contin. Dyn. Syst. 34(5), 1961–1993 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Côte, Raphaël, Friederich, X.: On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations. Commun. Partial Differ. Equ. 46(12), 2325–2385 (2021)

  7. Côte, R., Martel, Y.: Multi-travelling waves for the nonlinear Klein-Gordon equation. Trans. Am. Math. Soc. 370, 7461–7487 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  8. Côte, R., Martel, Y., Merle, F.: Construction of multi-soliton solutions for the \(L^2\)-supercritical gKdV and NLS equations. Rev. Mat. Iberoam. 27(1), 273–302 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Côte, R., Muñoz, C.: Multi-solitons for nonlinear Klein-Gordon equations. Forum Math. Sigma 2, e15 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. In: International Mathematics Research Papers, 01 2008. rpn002 (2008)

  11. Duyckaerts, T., Merle, F.: Dynamic of threshold solutions for energy-critical NlS. Geom. Funct. Anal. 18, 1787–1840 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Duyckaerts, T., Roudenko, S.: Threshold solutions for the focusing 3D cubic Schrödinger equation. Rev. Mat. Iberoam. 26(1), 1–56 (2010). (03)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Klein-Gordon equation. Math. Z. 189(4), 487–505 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics above the ground state energy for the one-dimensional NLKG equation. Math. Z. 272, 11 (2010)

    MATH  MathSciNet  Google Scholar 

  17. Kwong, K.-K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \(\mathbb{R}^n\). Arch. Ration. Mech. Anal. 105(3), 243–266 (1989)

    Article  MATH  Google Scholar 

  18. Maris, M.: Existence of nonstationary bubbles in higher dimensions. J. Math. Pures Appl. 81(12), 1207–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Martel, Y.: Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Am. J. Math. 127(5), 1103–1140 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Martel, Y., Merle, F.: Construction of multi-Solitons for the energy-critical wave equation in dimension 5. Arch. Ration. Mech. Anal. 222(3), 1113–1160 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  21. Martel, Y., Merle, F., Tsai, T.-P.: Stability and asymptotic stability for subcritical gKdV equations. Commun. Math. Phys. 231(2), 347–373 (2002)

    Article  MATH  Google Scholar 

  22. Martel, Y., Merle, F., Tsai, T.-P.: Stability in \(H^1\) of the sum of \(K\) solitary waves for some nonlinear Schrödinger equations. Duke Math. J. 133(3), 405–466 (2006). (06)

    Article  MATH  MathSciNet  Google Scholar 

  23. McLeod, K.: Uniqueness of positive radial solutions of \(\Delta u + f(u) = 0\) in \(R^n\), II. Trans. Am. Math. Soc. 339(2), 495–505 (1993)

    MATH  MathSciNet  Google Scholar 

  24. Nakamura, M., Ozawa, T.: The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces. Publ. Res. Inst. Math. Sci. 37, 11 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nakanishi, K., Schlag, W.: Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation. J. Differ. Equ. 250(5), 2299–2333 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pego, R.L., Weinstein, M.I.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. R. Soc. Lond. 340, 47–94 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Serrin, J., Tang, M.: Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49, 897–923 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tao, T.: Low regularity semi-linear wave equations. Commun. Partial Differ. Equ. 24(3–4), 599–629 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yuan, X.: On multi-solitons for the energy-critical wave equation in dimension 5. Nonlinearity 32(12), 5017–5048 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yuan, X.: Construction of excited multi-solitons for the 5D energy-critical wave equation. J. Hyperbolic Differ. Equ. 18(2), 397–434 (2021)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank his supervisor Raphaël Côte for his constant encouragements and for fruitful discussions. The author is also grateful to Rémi Carles for his comments which improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Friederich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Extension of the proofs to higher dimensions

The main parts of the proofs remain obviously unchanged. Essentially three notable adaptations are to be made, passing from the one-dimensional case to higher dimensions.

In a first instance, one has to be careful about how establishing several estimates. Although all estimates we have proved in the previous sections (in dimension 1) are identical for general d, the way we establish them when \(d\ge 2\) can be altered.

For example, we point out that it is no longer possible to use the Sobolev embedding \(H^1\hookrightarrow L^\infty \) when \(d\ge 2\). Particularly, multi-solitons in dimension \(d\ge 2\) do not necessarily take values in \(L^\infty (\mathbb {R}^d)\) and in order to estimate a quantity like

$$\begin{aligned}f(u)-f(\varphi )-f'(\varphi )(u-\varphi )\end{aligned}$$

(as for proving Claim 3.6), we would proceed as follows: by (H’1), we deduce that \(|f''(r)|=p(p-1)|r|^{p-2}\), thus applying Taylor formula, we have for fixed time \(t\in \mathbb {R}\) and position \(x\in \mathbb {R}^d\),

$$\begin{aligned} \left| f(u)-f(\varphi )-f'(\varphi )(u-\varphi )\right| (t,x)&\le \frac{|u-\varphi |^2(t,x)}{2}\sup _{r\in [\varphi (t,x),u(t,x)]}|f''(r)|\\&\le C|u-\varphi |^2(t,x)\left( |\varphi |^{p-2}(t,x)+|u|^{p-2}(t,x)\right) . \end{aligned}$$

Now, for all \(\psi \in L^\infty (\mathbb {R}^d)\) and for all \(z\in H^1(\mathbb {R}^d)\), Hölder inequality yields

$$\begin{aligned}\left| \int _{\mathbb {R}^d}|\psi ||u(t)-\varphi (t)|^{2}|z|^{p-2}\;dx\right| \le C\Vert \psi \Vert _{L^\infty }\left( \int _{\mathbb {R}^d}|u(t)-\varphi (t)|^{p}\;dx\right) ^{\frac{2}{p}}\left( \int _{\mathbb {R}^d}|z|^{p}\;dx\right) ^{\frac{p-2}{p}}.\end{aligned}$$

Finally, replacing z by \(\varphi (t)\) and \(u(t)-\varphi (t)\), we obtain an estimate of

$$\begin{aligned}\int _{\mathbb {R}^d}\psi \left( f(u)-f(\varphi )-f'(\varphi )(u-\varphi )\right) \;dx\end{aligned}$$

in terms of \(\Vert u-\varphi \Vert _{H^1}\), \(\Vert u\Vert _{H^1}\), and \(\Vert \varphi \Vert _{H^1}\) due to the Sobolev embedding \(H^1(\mathbb {R}^d)\hookrightarrow L^p(\mathbb {R}^d)\).

Secondly, in view of Proposition 2.1, one has to take into account, for all \(i=1,\dots ,N\) the d directions which generate the kernel of the operator \(\mathscr {H}_{\beta _i}\) when we practice modulation in dimension d. For instance, in Lemma 4.1, we would define E as follows:

$$\begin{aligned} E:=Z-\sum _{i=1}^Na_i\cdot \nabla R_i-\sum _{i=1}^Nb_iY_{+,i},\end{aligned}$$

with \(a_i(t)\in \mathbb {R}^d\) and \(b_i(t)\in \mathbb {R}\) such that for all \(i=1,\dots ,N\) and for all \(j=1,\dots ,d\):

$$\begin{aligned} \left\langle E(t),\partial _{x_j}R_i(t)\right\rangle&=0 \end{aligned}$$
(7.1)
$$\begin{aligned} \left\langle E(t),Z_{-,i}(t)\right\rangle&=0. \end{aligned}$$
(7.2)

But each time this extension does not affect the sequel; in other words, the estimates we are supposed to obtain afterwards and their proofs are the same.

A third change to be done concerns the way we define the different Lyapunov functionals which are studied throughout the article. To deal with dimensions greater or equal than 2, we reduce the problem to the case of a one-dimensional variable. For instance, let us explain how to generalize Step 4 in subsection 3.2.2 to all dimensions. The subset

$$\begin{aligned}\mathcal {M}:=\bigcup _{i\ne j}\left\{ \ell \in \mathbb {R}^d|\;\ell \cdot (\beta _j-\beta _i)=0\right\} \end{aligned}$$

of \(\mathbb {R}^d\) is of zero Lebesgue measure. Hence, there exists \(\ell \in \mathbb {R}^d\) such that for all \(i\ne j\),

$$\begin{aligned}\ell \cdot (\beta _j-\beta _i)\ne 0.\end{aligned}$$

In particular \(\ell \ne 0\) and, even if it means considering \(\frac{\ell }{|\ell |}\), we can assume that \(|\ell |=1\), so that \(\forall \;i=1,\dots ,N\), \(|\ell \cdot \beta _i|<1\). Now, defining \(\tilde{\beta }_i:=\ell \cdot \beta _i\), and even if it means changing the permutation \(\eta \), we have

$$\begin{aligned}-1<\tilde{\beta }_{\eta (1)}<\tilde{\beta }_{\eta (2)}<\dots<\tilde{\beta }_{\eta (N)}<1.\end{aligned}$$

Then, the direction described by \(\ell \) is to be favored: we consider the following cut-off functions:

$$\begin{aligned}\psi _k(t)=\psi \left( \frac{1}{\sqrt{t}}\left( \ell \cdot x-\frac{\tilde{\beta }_{\eta (k)}+\tilde{\beta }_{\eta (k+1)}}{2}-\ell \cdot \frac{x_{\eta (k)}+x_{\eta (k+1)}}{2}\right) \right) .\end{aligned}$$

At this stage, the definition of the functions \(\phi _k\) in terms of the \(\psi _k\) is kept unchanged and the corresponding Lyapunov functional is to be written:

$$\begin{aligned}\mathcal {F}_{W}(t)=\sum _{k=1}^K\int _{\mathbb {R}^d}\left( w_1^2+(\partial _xw_{1})^2+w_2^2-f'(Q_{\eta (k)})w_1^2+2\beta _{\eta (k)}\cdot \nabla w_1w_2\right) \phi _k\;dx.\end{aligned}$$

1.2 Proof of Corollary 1.8

The proof is an immediate adaptation of that of Proposition 4.12 in [3].

Let \(A>0\) and denote \(t_A:=-\frac{\ln (A)}{e_\beta }\). In the sense of the \(H^1\times L^2\)-norm, we have:

$$\begin{aligned} U^1(t+t_A,\cdot +\beta t_A)&=R_\beta (t+t_A,\cdot +\beta t_A)+e^{-e_\beta (t+t_A)}Y_{+,\beta }(t+t_A,\cdot +\beta t_A)+\mathrm {O}\left( e^{-2e_\beta t}\right) \\&=R_\beta (t)+Ae^{-e_\beta t}Y_{+,\beta }(t)+\mathrm {O}\left( e^{-2e_\beta t}\right) . \end{aligned}$$

Then, \(\Vert U^1(t+t_A,\cdot +\beta t_A)-R_\beta (t)\Vert _{H^1\times L^2}\underset{t\rightarrow +\infty }{\rightarrow }0\) so that there exist \(\tilde{A}\in \mathbb {R}\) and \(t_0=t_0(\tilde{A})\in \mathbb {R}\) such that for all \(t\ge t_0\),

$$\begin{aligned}U^{\tilde{A}}(t)=U^1(t+t_A,\cdot +\beta t_A).\end{aligned}$$

But on the other hand,

$$\begin{aligned}U^{\tilde{A}}(t)=R_\beta (t)+\tilde{A}e^{-e_\beta t}Y_{+,\beta }(t)+\mathrm {O}\left( e^{-2e_\beta t}\right) .\end{aligned}$$

Hence,

$$\begin{aligned}(A-\tilde{A})e^{-e_\beta t}Y_{+,\beta }(t)=\mathrm {O}\left( e^{-2e_\beta t}\right) ,\end{aligned}$$

which implies \(A=\tilde{A}\). Consequently, \(U^A(t)=U^1(t+t_A,\cdot +\beta t_A).\)

If \(A<0\), we have just to repeat the above argument with \(-A\) instead of A.

Lastly, let us identify \(U^0\). Given that \(R_\beta \) is a solution of (NLKG) which satisfies (1.5), Theorem 1.2 provides the existence of \(A\in \mathbb {R}\) and of \(t_0\in \mathbb {R}\) such that for all \(t\ge t_0\), \(U^A(t)=R_\beta (t)\).

Since \(U^A\) satisfies (1.4), we deduce that

$$\begin{aligned}\left\| Ae^{-e_\beta t}Y_{+,\beta }(t)\right\| _{H^1\times L^2}\le Ce^{-2e_\beta t}.\end{aligned}$$

Thus \(A=0\) and \(U^0=R_\beta \) is defined for all \(t\in \mathbb {R}\).

1.3 A result of analytic theory of differential equations

Lemma 7.1

Let \(t_0\in \mathbb {R}\), \(\mathcal {A}:[t_0,+\infty )\rightarrow \mathbb {R}\) be a \(\mathscr {C}^1\) bounded function, and \(\xi :[t_0,+\infty )\rightarrow \mathbb {R}^+\) be continuous and integrable.

If, for some \(\rho >0\),

$$\begin{aligned}\forall \;t\ge t_0,\qquad |\mathcal {A}'(t)+\rho \mathcal {A}(t)|\le \xi (t)\sup _{t'\ge t}|\mathcal {A}(t')|,\end{aligned}$$

then there exists \(c>0\) such that

$$\begin{aligned}\forall \;t\ge t_0,\qquad |\mathcal {A}(t)|\le ce^{-\rho t}.\end{aligned}$$

Proof

Let us assume that

$$\begin{aligned} \forall \;t\ge t_0,\qquad |\mathcal {A}'(t)+\rho \mathcal {A}(t)|\le \xi (t)\sup _{t'\ge t}|\mathcal {A}(t')|, \end{aligned}$$
(7.3)

for some \(\rho >0\). Then for all \(t\ge t_0\),

$$\begin{aligned}|(e^{\rho t}\mathcal {A})'(t)|\le \xi (t)e^{\rho t}\sup _{t'\ge t}|\mathcal {A}(t')|.\end{aligned}$$

Let us consider \(t\ge t_0\). For \(t'\ge t\), we obtain by integration

$$\begin{aligned}|e^{\rho t'}\mathcal {A}(t')- e^{\rho t}\mathcal {A}(t)|\le \int _t^{t'}\xi (s)e^{\rho s}\sup _{u\ge s}|\mathcal {A}(u)|\;ds.\end{aligned}$$

This implies that, for \(t'\ge t\),

$$\begin{aligned}e^{\rho t'}|\mathcal {A}(t')|\le e^{\rho t}|\mathcal {A}(t)|+\sup _{u\ge t}|\mathcal {A}(u)|e^{\rho t'}\int _t^{t'}\xi (s)\;ds.\end{aligned}$$

From the preceding line, we deduce that for all \(t'\ge t\),

$$\begin{aligned} |\mathcal {A}(t')|\le |\mathcal {A}(t)|+\sup _{u\ge t}|\mathcal {A}(u)|\int _t^{+\infty }\xi (s)\;ds. \end{aligned}$$
(7.4)

Now we consider \(t_1\ge t_0\) such that \(\int _{t_1}^{+\infty }\xi (s)\;ds<\frac{1}{2}\) (which is indeed possible given that \(\int _t^{+\infty }\xi (s)\;ds\rightarrow 0\) as \(t\rightarrow +\infty \)). By passing to the supremum on \(t'\) in (7.4), we obtain for all \(t\ge t_1\),

$$\begin{aligned}\sup _{t'\ge t}|\mathcal {A}(t')|\le 2|\mathcal {A}(t)|.\end{aligned}$$

Consequently, assumption (7.3) becomes

$$\begin{aligned} \forall \;t\ge t_1,\qquad |\mathcal {A}'(t)+\rho \mathcal {A}(t)|\le 2\xi (t)|\mathcal {A}(t)|. \end{aligned}$$
(7.5)

Let us define \(y(t):=e^{\rho t}|\mathcal {A}(t)|\). By integration of (7.5), we obtain

$$\begin{aligned} \forall \;t\ge t_1,\qquad y(t)\le y(t_1)+\int _{t_1}^t2\xi (s)y(s)\;ds. \end{aligned}$$
(7.6)

By a standard Grönwall argument, we conclude to the existence of \(C>0\) such that for all \(t\ge t_1, y(t)\le C\), which implies the desired result. For the sake of completeness, let us explicit this argument.

We define \(Y(t):=\exp \left( -\int _{t_1}^t2\xi (s)\;ds\right) \int _{t_1}^t2\xi (s)y(s)\;ds\) for \(t\ge t_1\). The function Y is \(\mathscr {C}^1\) on \([t_1,+\infty )\) and for all \(t\ge t_1\),

$$\begin{aligned} Y'(t)&=2\xi (t)\exp \left( -\int _{t_1}^t2\xi (s)\;ds\right) \left[ y(t)-\int _{t_1}^t2\xi (s)y(s)\;ds\right] \\&\le 2y(t_1)\xi (t)\exp \left( -\int _{t_1}^t2\xi (s)\;ds\right) \end{aligned}$$

by (7.6). Integrating the preceding inequality and observing that \(Y(t_1)=0\), we have

$$\begin{aligned}Y(t)\le \int _{t_1}^t2\xi (s)y(t_1)\exp \left( -\int _{t_1}^s2\xi (u)\;du\right) \;ds.\end{aligned}$$

We then infer

$$\begin{aligned} \int _{t_1}^t2\xi (s)y(s)\;ds=\exp \left( \int _{t_1}^t2\xi (s)\;ds\right) Y(t)\le 2y(t_1)\int _{t_1}^t\xi (s)\exp \left( \int _s^t2\xi (u)\;du\right) \;ds. \end{aligned}$$
(7.7)

Lastly, we denote \(\nu :=\int _{t_1}^{+\infty }\xi (s)\;ds\); gathering (7.6) and (7.7), we obtain

$$\begin{aligned}\forall \;t\ge t_1,\qquad y(t)\le y(t_1)+2y(t_1)e^{2\nu }\nu .\end{aligned}$$

This achieves the proof of Lemma 7.1. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friederich, X. On existence and uniqueness of asymptotic N-soliton-like solutions of the nonlinear Klein–Gordon equation. Math. Z. 302, 2131–2191 (2022). https://doi.org/10.1007/s00209-022-03137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03137-x

Keywords

Mathematics Subject Classification

Navigation