Skip to main content
Log in

Regularity results for solutions of mixed local and nonlocal elliptic equations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the mixed local-nonlocal semi-linear elliptic equations driven by the superposition of Brownian and Lévy processes

$$\begin{aligned} \left\{ \begin{array}{ll} - \Delta u + (-\Delta )^s u = g(x,u) &{} \text {in } \Omega , \\ u=0 &{} \text {in } \mathbb {R}^n\backslash \Omega . \\ \end{array} \right. \end{aligned}$$

Under mild assumptions on the nonlinear term g, we show the \(L^\infty \) boundedness of any weak solution (either not changing sign or sign-changing) by the Moser iteration method. Moreover, when \(s\in (0, \frac{1}{2}]\), we obtain that the solution is unique and actually belongs to \(C^{1,\alpha }(\overline{\Omega })\) for any \(\alpha \in (0,1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. As a technical remark, the additional presence of the Laplace operator will produce an extra term (that is the first term in (3.3)). We will check that this term is nonnegative by using a suitable integration by parts for the second-order generalized derivative, which will allow us to successfully complete the estimate produced by the full mixed order operator.

  2. As a notation remark, the convention used here is that

    $$\begin{aligned} \int _{A}\int _B f(x,y)\, dydx:= \int _{A}\left( \int _B f(x,y)\, dy\right) dx. \end{aligned}$$

References

  1. Abatangelo, N., Cozzi, M.: An elliptic boundary value problem with fractional nonlinearity. SIAM J. Math. Anal. 53(3), 3577–3601 (2021)

    Article  MathSciNet  Google Scholar 

  2. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré C Anal. Non Linéaire 25(3), 567–585 (2008)

  3. Barles, G., Chasseigne, E., Ciomaga, A., Imbert, C.: Lipschitz regularity of solutions for mixed integro-differential equations. J. Differ. Equ. 252(11), 6012–6060 (2012)

    Article  MathSciNet  Google Scholar 

  4. Barrios, B., Colorado, E., Servadei, R., Soria, F.: A critical fractional equation with concave-convex power nonlinearities. Ann. Inst. H. Poincaré C Anal. Non Linéaire 32(4), 875–900 (2015)

  5. Bensoussan, A., Lions, J.-L.: Impulse Control and Quasivariational Inequalities. \(\mu \). Gauthier-Villars, Montrouge; Heyden & Son, Inc., Philadelphia (1984). Translated from the French by J. M. Cole

  6. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: A Brezis-Nirenberg type result for mixed local and nonlocal operators. (2022) (Preprint)

  7. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: A Faber-Krahn inequality for mixed local and nonlocal operators. J. Anal. Math. (2021). https://arxiv.org/abs/2104.00830

  8. Biagi, S., Mugnai, D., Vecchi, E.: Global boundedness and maximum principle for a Brezis-Oswald approach to mixed local and nonlocal operators. (2022) (Preprint)

  9. Biagi, S., Vecchi, E., Dipierro, S., Valdinoci, E.: Semilinear elliptic equations involving mixed local and nonlocal operators. Proc. R. Soc. Edinb. Sect. A 151(5), 1611–1641 (2021)

    Article  MathSciNet  Google Scholar 

  10. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Mixed local and nonlocal elliptic operators: regularity and maximum principles. Comm. Partial Differ. Equ. 47(3), 585–629 (2022)

    Article  MathSciNet  Google Scholar 

  11. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators. Math. Eng. 5(1), 25 (2023)

    Google Scholar 

  12. Biswas, I.H., Jakobsen, E.R., Karlsen, K.H.: Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes. Appl. Math. Optim. 62(1), 47–80 (2010)

    Article  MathSciNet  Google Scholar 

  13. Buccheri, S., da Silva, J.V., de Miranda, L.H.: A system of local/nonlocal \(p\)-Laplacians: the eigenvalue problem and its asymptotic limit as \(p\rightarrow \infty \). Asymptot. Anal. 128(2), 149–181 (2022)

    MathSciNet  MATH  Google Scholar 

  14. Cabré, X., Dipierro, S., Valdinoci, E.: The Bernstein technique for integro-differential equations. Arch. Ration. Mech. Anal. 243(3), 1597–1652 (2022)

    Article  MathSciNet  Google Scholar 

  15. Chen, Z.-Q., Kim, P., Song, R., Vondraček, Z.: Boundary Harnack principle for \(\Delta +\Delta ^{\alpha /2}\). Trans. Am. Math. Soc. 364(8), 4169–4205 (2012)

    Article  Google Scholar 

  16. Del Pezzo, L.M., Ferreira, R., Rossi, J.D.: Eigenvalues for a combination between local and nonlocal \(p\)-Laplacians. Fract. Calc. Appl. Anal. 22(5), 1414–1436 (2019)

    Article  MathSciNet  Google Scholar 

  17. del Teso, F., Endal, J., Jakobsen, E.R.: On distributional solutions of local and nonlocal problems of porous medium type. C. R. Math. Acad. Sci. Paris 355(11), 1154–1160 (2017)

    Article  MathSciNet  Google Scholar 

  18. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  19. Dipierro, S., Lippi, E.P., Valdinoci, E.: (Non)local logistic equations with Neumann conditions. Ann. Inst. H. Poincaré C Anal. Non Linéaire (2021). https://arxiv.org/abs/2101.02315

  20. Dipierro, S., Medina, M., Valdinoci, E.: Fractional Elliptic Problems with Critical Growth in the Whole of \(\mathbb{R}^{n}\), Volume 15 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa (2017)

  21. Dipierro, S., Valdinoci, E.: Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes. Phys. A 575, 20 (2021)

    Article  Google Scholar 

  22. Dipierro, S., Lippi, E.P., Valdinoci, E.: Linear theory for a mixed operator with Neumann conditions. Asymptot. Anal. 128(4), 571–594 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). (Reprint of the 1998 edition)

  24. Gimbert, F., Lions, P.L.: Existence and regularity results for solutions of second-order, elliptic integro-differential operators. Ricerche Mat. 33(2), 315–358 (1984)

    MathSciNet  MATH  Google Scholar 

  25. Jakobsen, E.R., Karlsen, K.H.: Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differ. Equ. 212(2), 278–318 (2005)

    Article  MathSciNet  Google Scholar 

  26. Montefusco, E., Pellacci, B., Verzini, G.: Fractional diffusion with Neumann boundary conditions: the logistic equation. Discrete Contin. Dyn. Syst. Ser. B 18(8), 2175–2202 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Pellacci, B., Verzini, G.: Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems. J. Math. Biol. 76(6), 1357–1386 (2018)

    Article  MathSciNet  Google Scholar 

  28. Salort, A., Vecchi, E.: On the mixed local-nonlocal Hénon equation (Preprint)

  29. Su, X., Valdinoci, E., Wei, Y., Zhang, J.: Multiple solutions for mixed local and nonlocal elliptic equations arising from the Lévy type processes (2022) (Preprint)

  30. Wei, Y., Xifeng, S.: Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian. Calc. Var. Partial Differ. Equ. 52(1–2), 95–124 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Wei, Y., Xifeng, S.: On a class of non-local elliptic equations with asymptotically linear term. Discrete Contin. Dyn. Syst. 38(12), 6287–6304 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for carefully reading the manuscript and the valuable comments and suggestions on it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both X. Su and Y. Wei are supported by the National Natural Science Foundation of China (Grant no. 11971060, 11871242). Y. Wei is supported by Natural Science Foundation of Jilin Province (Grant no. 20200201248JC), and Scientific Research Project of Education Department of Jilin Province (Grant no. JJKH20220964KJ)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Valdinoci, E., Wei, Y. et al. Regularity results for solutions of mixed local and nonlocal elliptic equations. Math. Z. 302, 1855–1878 (2022). https://doi.org/10.1007/s00209-022-03132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03132-2

Keywords

Mathematics Subject Classification

Navigation