Skip to main content
Log in

Non-rational sextic double solids

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study double solids branched along nodal sextic surfaces in a projective space and the 2-torsion subgroups in the third integer cohomology groups of their resolutions of singularities. These groups can be considered as obstructions to rationality of the double solids. Studying these groups we conclude that all sextic double solids admitting non-trivial obstructions to rationality are branched along determinantal surfaces of very specific type and we provide an explicit list of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc. Lond. Math. Soc. 3(25), 75–95 (1972)

    Article  MathSciNet  Google Scholar 

  2. Barth, W.: Counting singularities of quadratic forms on vector bundles. In Vector bundles and differential equations (Proc. Conf., Nice, 1979), volume 7 of Progr. Math., pp. 1–19. Birkhäuser, Boston (1980)

  3. Beauville, A.: Sur le nombre maximum de points doubles d’une surface dans \({\bf P}^{3}\)\((\mu (5)=31)\). In Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 207–215. Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, MD (1980)

  4. Beauville, A.: A very general sextic double solid is not stably rational. Bull. Lond. Math. Soc. 48(2), 321–324 (2016)

    Article  MathSciNet  Google Scholar 

  5. Catanese, F.: Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications. Invent. Math. 63(3), 433–465 (1981)

    Article  MathSciNet  Google Scholar 

  6. Casnati, G., Catanese, F.: Even sets of nodes are bundle symmetric. J. Differ. Geom. 47(2), 237–256 (1997)

    Article  MathSciNet  Google Scholar 

  7. Casnati, G., Catanese, F.: Errors in the paper: “Even sets of nodes are bundle symmetric” . J. Differ. Geom. 50(2), 415 (1998)

  8. Clemens, C.H.: Double solids. Adv. Math. 47(2), 107–230 (1983)

    Article  MathSciNet  Google Scholar 

  9. Cheltsov, I., Park, J.: Sextic double solids. In Cohomological and geometric approaches to rationality problems, volume 282 of Progr. Math., pages 75–132. Birkhäuser Boston, Inc., Boston, MA (2010)

  10. Catanese, F., Tonoli, F.: Even sets of nodes on sextic surfaces. J. Eur. Math. Soc. (JEMS) 9(4), 705–737 (2007)

    Article  MathSciNet  Google Scholar 

  11. Endraß, S.: Minimal even sets of nodes. J. Reine Angew. Math. 503, 87–108 (1998)

  12. Endraß, S.: On the divisor class group of double solids. Manuscr. Math. 99(3), 341–358 (1999)

  13. Hassett, B., Tschinkel, Y.: On stable rationality of fano threefolds and del pezzo fibrations. Journal f r die reine und angewandte Mathematik, pp. 1–13 (2016)

  14. Iliev, A., Katzarkov, L., Przyjalkowski, V.: Double solids, categories and non-rationality. Proc. Edinb. Math. Soc. (2) 57(1), 145–173 (2014)

  15. Józefiak, T.: Ideals generated by minors of a symmetric matrix. Comment. Math. Helv. 53(4), 595–607 (1978)

    Article  MathSciNet  Google Scholar 

  16. Jaffe, D.B., Ruberman, D.: A sextic surface cannot have \(66\) nodes. J. Algebra. Geom. 6(1), 151–168 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Mumford, D.: Lectures on curves on an algebraic surface. With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59. Princeton University Press, Princeton, NJ (1966)

  18. Przyjalkowski, V., Shramov, K.: Double quadrics with large automorphism groups. Tr. Mat. Inst. Steklova 294, 167–190 (2016). English version published in Proc. Steklov Inst. Math. 294(1), 154–175 (2016)

  19. Tyurina, G.N.: Resolution of singularities ofplane deformations of double rational points. Funktsional. Anal. i Prilozhen. 4, 77–83 (1970)

    Article  Google Scholar 

  20. van Geemen, B., Zhao, Y.: Genus three curves and 56 nodal sextic surfaces. J. Algebra. Geom. 27(4), 583–592 (2018)

    Article  MathSciNet  Google Scholar 

  21. Voisin, C.: Unirational threefolds with no universal codimension \(2\) cycle. Invent. Math. 201(1), 207–237 (2015)

    Article  MathSciNet  Google Scholar 

  22. Walter, C.H.: Pfaffian subschemes. J. Algebra. Geom. 5(4), 671–704 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to my advisor, Constantin Shramov, for suggesting this problem as well as for his patience and invaluable support. I also thank Anton Fonarev and Lyalya Guseva for useful discussions. I was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Kuznetsova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, A. Non-rational sextic double solids. Math. Z. 301, 4015–4036 (2022). https://doi.org/10.1007/s00209-022-03040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03040-5

Keywords

Navigation