Skip to main content
Log in

On Schwartz equivalence of quasidiscs and other planar domains

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Two open subsets of \({\mathbb {R}}^n\) are called Schwartz equivalent if there exists a diffeomorphism between them that induces an isomorphism of Fréchet spaces between their spaces of Schwartz functions. In this paper we use tools from quasiconformal geometry in order to prove the Schwartz equivalence of a few families of planar domains. We prove that all quasidiscs are Schwartz equivalent. We also prove that any non-simply-connected planar domain whose boundary is a quasicircle is Schwartz equivalent to the complement of the closed unit disc. We classify the two Schwartz equivalence classes of domains that consist of the entire plane minus a quasiarc. We prove a Koebe-type theorem, stating that any planar domain whose connected components of its boundary are finitely many quasicircles, with at most one unbounded, is Schwartz equivalent to a circle domain. We also prove that the notion of Schwartz equivalence is strictly finer than the notion of \(C^\infty \)-diffeomorphism by constructing examples of open subsets of \({\mathbb {R}}^n\) that are \(C^\infty \)-diffeomorphic and are not Schwartz equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahlfors, L.V., Beurling, A.: Conformal invariants and function-theoretic null-sets. Acta Math. 83, 101–129 (1950)

    Article  MathSciNet  Google Scholar 

  2. Ahlfors, L.V.: Quasiconformal reflections. Acta Math. 109, 291–301 (1963)

    Article  MathSciNet  Google Scholar 

  3. Ahlfors, L.V.: Lectures on Quasiconformal Mappings, 2nd edn. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  4. Aizenbud, A., Gourevitch, D.: Schwartz functions on Nash manifolds. Int. Math. Res. Not. (2008). https://doi.org/10.1093/imrn/rnm155

  5. Arthur, J.G.: Harmonic analysis of tempered distributions on semisimple Lie groups of real rank one. Thesis, Yale (1970)

  6. Arthur, J.G.: A theorem on the Schwartz space of a reductive Lie group. Proc. Natl. Acad. Sci. USA 72(12), 4718–4719 (1975)

    Article  MathSciNet  Google Scholar 

  7. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  8. Becker, J., Pommerenke, Ch.: Hölder continuity of conformal mappings and nonquasiconformal Jordan curves. Comment. Math. Helv. 57, 221–225 (1982). https://doi.org/10.1007/BF02565858

    Article  MathSciNet  MATH  Google Scholar 

  9. Casselman, W.: Introduction to the Schwartz space of \(\Gamma \backslash G\). Can. J. Math. XL(2), 285–320 (1989)

  10. Casselman, W., Hecht, H., Miličić, D.: Bruhat filtrations and Whittaker vectors for real groups, The mathematical legacy of Harish-Chandra (Baltimore, Md, 1998), 15190, Proc. Sympos. Pure Math., vol. 68. Amer. Math. Soc., Providence (2000)

  11. Choie, Y., Getz, J.R.: Schubert Eisenstein series and Poisson summation for Schubert varieties. arXiv:2107.01874v2

  12. du Cloux, F.: Sur les représentations différentiables des groupes de Lie alégbriques. Annales scientifiques de l’É.N.S 24(3), 257–318 (1991)

    MATH  Google Scholar 

  13. Elazar, B., Shaviv, A.: Schwartz functions on real algebraic varieties. Can. J. Math. 70(5), 1008–1037 (2018). https://doi.org/10.4153/CJM-2017-042-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Falconer, K.: Fractal Geometry—Mathematical Foundations and Applications. Wiley, New York (1997). ISBN:0-471-96777-7

  15. Friedlander, F.G.: Introduction to the Theory of Distributions, 2nd edn. Cambridge University Press, Cambridge (1998). ISBN:0-521-64971-4

  16. Gehring, F.W., Hag, K.: The Ubiquitous Quasidisk. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

  17. Getz, J.R.: On triple product L-functions. arXiv:1912.01405

  18. Getz, J.R., Hsu, C.-H., Leslie, S.: Harmonic analysis on certain spherical varieties. arXiv:2103.10261

  19. Gourevitch, D., Sahi, S., Sayag, E.: Analytic continuation of equivariant distributions. Int. Math. Res. Not. 23, 7160–7192 (2019). https://doi.org/10.1093/imrn/rnx326

    Article  MathSciNet  MATH  Google Scholar 

  20. Harish-Chandra: Discrete series for semisimple Lie groups. II. Explicit determination of the characters. Acta Math. 116, 1–111 (1966)

    Article  MathSciNet  Google Scholar 

  21. He, Z.-X., Schramm, O.: Fixed points, Koebe uniformization and circle packings. Ann. Math. 2(137), 369–406 (1993)

    Article  MathSciNet  Google Scholar 

  22. Koebe, P.: Abhandlungen zur Theorie der konformen Abbildung. Math. Z. 2, 198–236 (1918)

    Article  MathSciNet  Google Scholar 

  23. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane. Springer, New York (1973)

    Book  Google Scholar 

  24. Näkki, R., Palka, B.: Hyperbolic geometry and Hölder continuity of conformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 433–444 (1985)

    Article  MathSciNet  Google Scholar 

  25. Pommerenke, Ch.: Boundary Behavior of Conformal Maps. Springer, Berlin (1991). ISBN:978-3-642-08129-3

  26. Sakellaridis, Y.: The Schwartz space of a smooth semi-algebraic stack. Sel. Math. (N.S.) 22(4), 2401–2490 (2016). https://doi.org/10.1007/s00029-016-0285-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Schwartz, L.: Théorie des distributions, l’Institut de Mathématique de l’Université de Strasbourg, nos. 9. Actualités Scientifiques et Industrielles, nos. 1091. I, 148 (1950)

  28. Schwartz, L.: Théorie des distributions, l’Institut de Mathématique de l’Université de Strasbourg, nos. 10. Actualités Scientifiques et Industrielles, nos. 1122. II, 169 (1951)

  29. Shaviv, A.: Tempered distributions and Schwartz functions on definable manifolds. J. Funct. Anal. 278, 108471 (2020). https://doi.org/10.1016/j.jfa.2020.108471

    Article  MathSciNet  MATH  Google Scholar 

  30. Shiota, M.: Classification of Nash manifolds. Annales de l’Institut Fourier, tome 33(3), 209–232 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

E. P. would like to thank Mario Bonk for discussions on the paper. A. S. is grateful to Alexandre Eremenko, Bo’az Klartag, and Dmitry Novikov for valuable discussions related to the subject this paper addresses, and to Charles Fefferman for his great support throughout the past 2 years, and for many interesting discussions. E. P. and A. S. are thankful to Fedor Nazarov and Mikhail Sodin for bringing the example presented in Sect. 7 to their attention. They also thank the referees for carefully reading the paper and providing useful remarks. E. P. was supported by the Simons Foundation Algorithms and Geometry Collaboration. A. S. was supported by AFOSR Grant FA9550-18-1-069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ary Shaviv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prywes, E., Shaviv, A. On Schwartz equivalence of quasidiscs and other planar domains. Math. Z. 301, 3641–3669 (2022). https://doi.org/10.1007/s00209-022-03024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03024-5

Mathematics Subject Classification

Navigation