Skip to main content
Log in

On elliptic equations with Stein–Weiss type convolution parts

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the critical elliptic equations with Stein–Weiss type convolution parts

$$\begin{aligned} \displaystyle -\Delta u =\frac{1}{|x|^{\alpha }}\left( \int _{\mathbb {R}^{N}}\frac{|u(y)|^{2_{\alpha , \mu }^{*}}}{|x-y|^{\mu }|y|^{\alpha }}dy\right) |u|^{2_{\alpha , \mu }^{*}-2}u,\quad x\in \mathbb {R}^{N}, \end{aligned}$$

where the critical exponent is due to the weighted Hardy–Littlewood–Sobolev inequality and Sobolev embedding. We develop a nonlocal version of concentration-compactness principle to investigate the existence of solutions and study the regularity, symmetry of positive solutions by moving plane arguments. In the second part, the subcritical case is also considered, the existence, symmetry, regularity of the positive solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Gao, F., Squassina, M., Yang, M.: Singularly perturbed critical Choquard equations. J. Differ. Equ. 263, 3943–3988 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., Yang, M.: Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method. Proc. R. Soc. Edinburgh Sect. A 146, 23–58 (2016)

    Article  MATH  Google Scholar 

  4. Alves, C.O., Yang, M.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257, 4133–4164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubin, T.: Best constants in the Sobolev imbedding theorem: the Yamabe problem. Ann. Math. Stud. 115, 173–184 (1989)

    Google Scholar 

  6. Beckner, W.: Pitt’s inequality with sharp convolution estimates. Proc. Am. Math. Soc. 136, 1871–1885 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beckner, W.: Weighted inequalities and Stein–Weiss potentials. Forum. Math. 2, 587–606 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buffoni, B., Jeanjean, L., Stuart, C.A.: Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc. Am. Math. Soc. 119, 179–186 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chabrowski, J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc. Var. Partial Differ. Equ. 3, 493–512 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lu, C., Zhao, L., Lu, G.: Symmetry and regularity of solutions to the weighted Hardy–Sobolev type system. Adv. Nonlinear Stud. 16, 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W., Li, C., Ou, B.: Classification of solutions for a system of integral equations. Commun. Partial Differ. Equ. 30, 59–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, W., Li, C., Ou, B.: Qualitative properties of solutions for an integral equation. Discret. Contin. Dyn. Syst. 12, 347–354 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, W., Jin, W., Li, C., Lim, J.: Weighted Hardy–Littlewood–Sobolev inequalities and systems of integral equations. Discret. Contin. Dyn. Syst. Suppl. 20, 164–172 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Chen, W., Li, C.: The best constant in a weighted Hardy–Littlewood–Sobolev inequality. Proc. Am. Math. Soc. 136, 955–962 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, W., Li, C.: Methods on nonlinear elliptic equations. AIMS Ser. Differ. Equ. Dyn. Syst. 4, 1 (2010)

    MathSciNet  Google Scholar 

  20. Chen, W., Li, C.: Regularity of solutions for a system of integral equations. Commun. Pure Appl. Anal. 4, 1–8 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, W., Li, C., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308, 404–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, W., Li, C., Zhang, R.: A direct method of moving spheres on fractional order equations. J. Funct. Anal. 272, 4131–4157 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ding, Y., Gao, F., Yang, M.: Semiclassical states for Choquard type equations with critical growth: critical frequency case. Nonlinearity 33, 6695–6728 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dou, J., Zhu, M.: Reversed Hardy–Littewood–Sobolev inequality. Int. Math. Res. Not. 19, 9696–9726 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Du, L., Yang, M.: Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discret. Contin. Dyn. Syst. 39, 5847–5866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, F., Yang, M.: The Brezis–Nirenberg type critical problem for nonlinear Choquard equation. Sci China Math 61, 1219–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, F., Yang, M.: A strongly indefinite Choquard equation with critical exponent due to the Hardy–Littlewood–Sobolev inequality. Commun. Contemp. Math 20(1750037), 22 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Gao, F., Silva, Edcarlos D., Yang, M., Zhou, J.: Existence of solutions for critical Choquard equations via the concentration compactness method. Proc. Royal Soc. Edinburgh: Section A Math. 150, 921–954 (2020)

  29. Gidas, B., Ni, W., Nirenberg, X.: Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}^{N}\). Math. Anal. Appl. part A, 369–402 (1981)

    MATH  Google Scholar 

  30. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gilbarg, D., Trudinger, N.S.: Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften, vol. 224. Springer, Berlin (1983)

    MATH  Google Scholar 

  32. Jin, C., Li, C.: Qualitative analysis of some systems of integral equations. Calc. Var. Partial Differ. Equ. 26, 447–457 (2006)

    Article  MATH  Google Scholar 

  33. Lei, Y.: On the regularity of positive solutions of a class of Choquard type equations. Math. Z. 273, 883–905 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lei, Y.: Qualitative analysis for the Hartree-type equations. SIAM J. Math. Anal. 45, 388–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lei, Y., Li, C., Ma, C.: Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy–Littlewood–Sobolev system. Calc. Var. Partial Differ. Equ. 42, 43–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lei, Y.: Liouville theorems and classification results for a nonlocal Schrödinger equation. Discret. Contin. Dyn. Syst. 38, 5351–5377 (2018)

    Article  MATH  Google Scholar 

  37. Lenzmann, E.: Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2, 1–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Y.Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. 6, 153–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lieb, E.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/77)

  41. Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics. AMS, Providence (2001)

    Google Scholar 

  42. Li, C.: Local asymptotic symmetry of singular solutions to nonlinear elliptic equations. Invent. Math. 123, 221–231 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, C., Ma, L.: Uniqueness of positive bound states to Schrödinger systems with critical exponents. SIAM J. Math. Anal. 40, 1049–1057 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lions, P.L.: The concentration-compactness principle in the calculus of variations, The limit case, Part 1. Rev. Mat. Iberoamericana 1, 145–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lions, P.L.: The concentration-compactness principle in the calculus of variations, The limit case, Part 2. Rev. Mat. Iberoamericana 1, 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lions, P.L.: The concentration-compactness principle in the calculus of variations, the locally compact case, Part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lions, P.L.: The concentration-compactness principle in the calculus of variations, the locally compact case, Part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, S.: Regularity, symmetry, and uniqueness of some integral type quasilinear equations. Nonlinear Anal. 71, 1796–1806 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lu, G., Zhu, J.: Symmetry and regularity of extremals of an integral equation related to the Hardy–Sobolev inequality. Calc. Var. Partial Differ. Equ. 42, 563–577 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ma, C., Chen, W., Li, C.: Regularity of solutions for an integral system of Wolff type. Adv. Math. 226, 2676–2699 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Moroz, V., Van Schaftingen, J.: Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Penrose, R.: On gravity role in quantum state reduction. Gen. Relativ. Gravitat. 28, 581600 (1996)

    Article  MathSciNet  Google Scholar 

  56. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    Book  MATH  Google Scholar 

  57. Stein, E.M., Weiss, G.: Fractional integrals on n-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)

    MathSciNet  MATH  Google Scholar 

  58. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura. Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wei, J., Winter, M.: Strongly Interacting Bumps for the Schrödinger–Newton Equations. J. Math. Phys. 50, 012905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313, 207–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. Willem, M.: Functional Analysis. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  62. Ziemer, W.: Weakly Differentiable Functions. Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her useful comments and suggestions which help to improve the presentation of the paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minbo Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Minbo Yang is the corresponding author who was partially supported by NSFC (11971436, 12011530199) and ZJNSF (LZ22A010001, LD19A010001) and Fashun Gao was partially supported by NSFC (11901155, 12011530199)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Gao, F. & Yang, M. On elliptic equations with Stein–Weiss type convolution parts. Math. Z. 301, 2185–2225 (2022). https://doi.org/10.1007/s00209-022-02973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-02973-1

Keywords

Mathematics Subject Classification

Navigation