Skip to main content
Log in

Frobenius–Perron theory of representations of quivers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The Frobenius–Perron theory of an endofunctor of a category was introduced in recent years (Chen et al. in Algebra Number Theory 13(9):2005–2055, 2019; Chen et al. in Frobenius–Perron theory for projective schemes. Preprint. arXiv:1907.02221, 2019). We apply this theory to monoidal (or tensor) triangulated structures of quiver representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariki, S.: Hecke algebras of classical type and their representation type. Proc. Lond. Math. Soc. (3) 91(2), 355–413 (2005)

    Article  MathSciNet  Google Scholar 

  2. Artin, M., Zhang, J.J.: Noncommutative projective schemes. Adv. Math. 109, 228–287 (1994)

    Article  MathSciNet  Google Scholar 

  3. Asai, S.: Semibricks. Int. Math. Res. Not. IMRN 16, 4993–5054 (2020)

    Article  MathSciNet  Google Scholar 

  4. Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras, vol. 1, Lond. Math. Soc., p. 65 (2006)

  5. Balmer, P.: The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math. 588, 149–168 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bao, Y.-H., Xu, X.-W., Ye, Y., Zhang, J.J., Zhao, Z.-B.: Operads associated to weak bialgebras (2021) (in preparation)

  7. Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque, vol. 100, pp. 5–171. Soc. Math. France, Paris (1982)

  8. Bernstein, I.N., Gelfand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel theorem. Uspehi Mat. Nauk 28(2), 19–33 (1973)

    MathSciNet  Google Scholar 

  9. Bondal, A., Van den Bergh, M.: Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J. 3(1), 1–36 (2003). (258)

    Article  MathSciNet  Google Scholar 

  10. Böhm, G., Caenepeel, S., Janssen, K.: Weak bialgebras and monoidal categories. Commun. Algebra 39, 4584–4607 (2011)

    Article  MathSciNet  Google Scholar 

  11. Böhm, G., Nill, F., Szlachányi, K.: Weak Hopf algebras I. Integral theory and \(C^ast \)-structures. J. Algebra 221, 385–438 (1999)

    Article  MathSciNet  Google Scholar 

  12. Brüning, K., Burban, I.: Coherent sheaves on an elliptic curve (English summary). In: Interactions Between Homotopy Theory and Algebra, vol. 436, pp. 297–315. Contemp. Math. Amer. Math. Soc., Providence (2007)

  13. Butler, M.C.R., Ringel, C.M.: Auslander–Reiten sequences with few middle terms and applications to string algebras. Commun. Algebra 15(1–2), 145–179 (1987)

    Article  MathSciNet  Google Scholar 

  14. Chen, J.M., Gao, Z.B., Wicks, E., Zhang, J.J., Zhang, X.-H., Zhu, H.: Frobenius–Perron theory of endofunctors. Algebra Number Theory 13(9), 2005–2055 (2019)

    Article  MathSciNet  Google Scholar 

  15. Chen, J.M., Gao, Z.B., Wicks, E., Zhang, J. J., Zhang, X-.H., Zhu, H.: Frobenius–Perron theory for projective schemes (2019). arXiv:1907.02221

  16. Chen, X.-W., Ringel, C.M.: Hereditary triangulated categories. J. Noncommut. Geom. 12(4), 1425–1444 (2018)

    Article  MathSciNet  Google Scholar 

  17. Drozd, J.A., Tame and wild matrix problems, Representation theory, II. In: Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979, Lecture Notes in Math., vol. 832, pp. 242–258. Springer, Berlin (1980)

  18. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Math. Surveys and Monographs vol. 205. Amer. Math. Soc., Providence (2015)

  19. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. (2) 162(2), 581–642 (2005)

    Article  MathSciNet  Google Scholar 

  20. Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. Math. J. (3) 4(627–654), 782–783 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    Article  MathSciNet  Google Scholar 

  22. Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6, 71–103 (1972)

    Article  MathSciNet  Google Scholar 

  23. Gabriel, P.: Représentations indécomposables, (French) Séminaire Bourbaki, 26e ann’ee (1973/1974), Exp. No. 444. Lecture Notes in Math., Vol. 431, pp. 143–169. Springer, Berlin (1975)

  24. Gabriel, P.: Indecomposable Representations. II. Symposia Mathematica, vol. XI, pp. 81–104. Academic, London (1973)

  25. Gabriel, P., Rouiter, A.V.: Representations of finite-dimensional algebras, with a chapter by B. Keller, Encyclopaedia Math. Sci., Algebra, VIII, vol. 73, pp. 1–177. Springer, Berlin (1992)

  26. Geigle, W., Lenzing, H.: A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in Math., vol. 265–297, p. 1273. Springer, Berlin (1987)

  27. Geršgorin, S.: Uber die Abgrenzung der Eigenwerte einer Matrix. Bull. Acad. Sc. Leningrad 6, 749–754 (1931)

    MATH  Google Scholar 

  28. Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62(3), 339–389 (1987)

    Article  MathSciNet  Google Scholar 

  29. Herschend, M.: Solution to the Clebsch–Gordan problem for representations of quivers of type \( ilde{{mathbb{A}}}_n\). J. Algebra Appl. (5) 4, 481–488 (2005)

    Article  MathSciNet  Google Scholar 

  30. Herschend, M.: Tensor products on quiver representations. J. Pure Appl. Algebra (2) 212, 453–469 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Herschend, M.: On the representation rings of quivers of exceptional Dynkin type. Bull. Sci. Math. (5) 132, 395–418 (2008)

    Article  MathSciNet  Google Scholar 

  32. Herschend, M.: On the representation ring of a quiver. Algebras Represent. Theory (6) 12, 513–541 (2009)

    Article  MathSciNet  Google Scholar 

  33. Herschend, M.: Solution to the Clebsch–Gordan problem for string algebras. J. Pure Appl. Algebra (11) 214, 1996–2008 (2010)

    Article  MathSciNet  Google Scholar 

  34. Hille, L., Perling, M.: Exceptional sequences of invertible sheaves on rational surfaces. Compos. Math. 147(4), 1230–1280 (2011)

    Article  MathSciNet  Google Scholar 

  35. Huang, H.-L., Torrecillas, B.: Quiver bialgebras and monoidal categories. Colloq. Math. 131(2), 287–300 (2013)

    Article  MathSciNet  Google Scholar 

  36. Igusa, K.: Notes on the no loops conjecture. J. Pure Appl. Algebra 69(2), 161–176 (1990)

    Article  MathSciNet  Google Scholar 

  37. Janelidze, G., Kelly, G.M.: A note on actions of a monoidal category. In: CT2000 Conference (Como)., Theory Appl. Categ., vol. 9, pp. 61–91 (2001/02)

  38. Keller, B.: Derived categories and tilting, Handbook of tilting theory. London Math. Soc. Lecture Note Ser., vol. 332, pp. 49–104. Cambridge Univ. Press, Cambridge (2007)

  39. Keller, B., Vossieck, D.: Aisles in derived categories. Deuxiéme Contact Franco-Belge en Algébre (Faulx-les-Tombes, 1987). Bull. Soc. Math. Belg. Sér. A 40(2), 239–253 (1988)

    MathSciNet  Google Scholar 

  40. Kinser, R.: Rank functions on rooted tree quivers. Duke Math. J. 152(1), 27–92 (2010)

    Article  MathSciNet  Google Scholar 

  41. Kinser, R., Schiffler, R.: Idempotents in representation rings of quivers. Algebra Number Theory 6(5), 967–994 (2012)

    Article  MathSciNet  Google Scholar 

  42. Koenig, S., Yang, D.: Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras. Doc. Math. 19, 403–438 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Krause, H., Vossieck, D.: Length categories of infinite height. In: Geometric and Topological Aspects of the Representation Theory of Finite Groups, Springer Proc. Math. Stat., vol. 242, pp. 213–234. Springer, Cham (2018)

  44. Kussin, D., Lenzing, H., Meltzer, H.: Triangle singularities, ADE-chains, and weighted projective lines. Adv. Math. 237, 194–251 (2013)

    Article  MathSciNet  Google Scholar 

  45. Lenzing, H.: Weighted projective lines and applications. In: Representations of Algebras and Related Topics, pp. 153–187. EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2011)

  46. Lenzing, H., Meltzer, H.: Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, Representations of algebras (Ottawa, Canada, 1992). CMS Conf. Proc., vol. 14, pp. 313–337 (1994)

  47. Lenzing, H., Reiten, I.: Hereditary Noetherian categories of positive Euler characteristic. Math. Z. 254(1), 133–171 (2006)

    Article  MathSciNet  Google Scholar 

  48. Manin, Y.I.: Quantum Groups and Noncommutative Geometry, 2nd edition. With a contribution by Theo Raedschelders and Michel Van den Bergh. CRM Short Courses. Centre de Recherches Mathématiques, [Montreal], QC. Springer, Cham (2018)

  49. Minamoto, H., Mori, I.: The structure of AS-Gorenstein algebras. Adv. Math. 226(5), 4061–4095 (2011)

    Article  MathSciNet  Google Scholar 

  50. Mori, I.: B-construction and C-construction. Commun. Algebra 41(6), 2071–2091 (2013)

    Article  Google Scholar 

  51. Nakano, D.K., Vashaw, K.B., Yakimov, M.T.: Noncommutative tensor triangular geometry (2019). arXiv:1909.04304

  52. Nazarova, L.A.: Representations of quivers of infinite type. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 37, 752–791 (1973)

    MathSciNet  MATH  Google Scholar 

  53. Nikshych, D., Turaev, V., Vainerman, L.: Invariants of knots and 3-manifolds from quantum groupoids. In: Proceedings of the Pacific Institute for the Mathematical Sciences Workshop “Invariants of Three-Manifolds”, vol. 127, pp. 91–123 (2003)

  54. Nikshych, D., Vainerman, L.: Finite quantum groupoids and their applications, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, pp. 211–262. Cambridge Univ. Press, Cambridge (2002)

  55. Nill, F.: Axioms for weak bialgebras. arXiv:math/9805104

  56. Ringel, C.M.: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984)

  57. Rogalski, D., Won, R., Zhang, J.J.: A proof of the Brown–Goodearl conjecture for module-finite weak Hopf algebras. Algebra Number Theory 15(4), 971–997 (2021)

    Article  MathSciNet  Google Scholar 

  58. Schiffmann, O.: Lectures on Hall Algebras, Geometric Methods in Representation Theory. Soc. Math. France, Paris (2012)

  59. Stanley, D., van Roosmalen, A.C.: Derived equivalences for hereditary Artin algebras. Adv. Math. 303, 415–463 (2016)

    Article  MathSciNet  Google Scholar 

  60. Strassen, V.: Asymptotic degeneration of representations of quivers. Comment. Math. Helv. (4) 75, 594–607 (2000)

    Article  MathSciNet  Google Scholar 

  61. Suárez-Álvarez, M.: The Hilton–Eckmann argument for the anti-commutativity of cup products. Proc. Am. Math. Soc. 132(8), 2241–2246 (2004)

    Article  MathSciNet  Google Scholar 

  62. Vashaw, K., Yakimov, M.: Prime spectra of abelian 2-categories and categorifications of Richardson varieties. In: Representations and Nilpotent Orbits of Lie Algebraic Systems, Progr. Math., vol. 330, pp. 501–553. Birkhäuser/Springer, Cham (2019)

  63. Wu, J., Liu, G., Ding, N.: Classification of affine prime regular Hopf algebras of GK-dimension one. Adv. Math. 296, 1–54 (2016)

    Article  MathSciNet  Google Scholar 

  64. Zhou, J.H., Wang, Y.H., Ding, J.R.: Frobenius–Perron dimension of representations of a class of D-type quivers (in Chinese). Sci. Sin. Math. 51, 673–684 (2021). https://doi.org/10.1360/SSM-2020-0093

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for his/her very careful reading and valuable comments and thank Professors Jianmin Chen and Xiao-Wu Chen for many useful conversations on the subject. J. J. Zhang was partially supported by the US National Science Foundation (Grant Nos. DMS-1700825 and DMS-2001015). J.-H. Zhou was partially supported by Fudan University Exchange Program Scholarship for Doctoral Students (Grant No. 2018024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.J., Zhou, JH. Frobenius–Perron theory of representations of quivers. Math. Z. 300, 3171–3225 (2022). https://doi.org/10.1007/s00209-021-02888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02888-3

Keywords

Mathematics Subject Classification

Navigation