Abstract
Let \(\phi \) be an even Hecke–Maass cusp form on \({{\text {SL}}}_2({\mathbb {Z}})\) whose L-function does not vanish at the center of the functional equation. In this article, we obtain an exact formula of the average of triple products of \(\phi \), f and \({\bar{f}}\), where f runs over an orthonormal basis \(H_k\) of Hecke eigen elliptic cusp forms on \({{\text {SL}}}_2({\mathbb {Z}})\) of a fixed weight \(k\geqslant 4\). As an application, we prove a quantitative non-vanishing results on the central values for the family of degree 6 L-functions \(L(s,\phi \times \mathrm{Ad}\,f)\) with f in the union of \(H_k\) \((\mathrm{K}\leqslant k<2\mathrm{K})\) as \(\mathrm{K}\rightarrow \infty \).
Similar content being viewed by others
References
Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Mathematics Studies Number 94. Princeton University Press, Princeton (1980)
Bump, D.: Automorphic Forms and Representations, Cambridge Stud. Adv. Math. 55. Cambridge University Press, Cambridge (1997)
Friedberg, S., Hoffstein, J.: Nonvanishing theorems for automorphic \(L\)-functions on \({\rm GL}(2)\). Ann. Math. (2) 142(2), 385–423 (1995)
Gelbart, S., Jacquet, H.: A relation between automorphic representations of \({\rm {GL}}(2)\) and \({\rm GL}(3)\). Ann. Sci. Ecole Normale Sup. 4 série 11, 471–552 (1978)
Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 7th edn. Academic Press Inc, New York (2007)
Hejhal, D.: The Selberg Trace Formula for \({\rm PSL}(2, R)\). Lecture Notes in Mathematics, 1001, vol. 2. Springer, Berlin (1983)
Holowinsky, R., Soundararajan, K.: Mass equidistribution for Hecke eigenforms. Ann. Math. 172, 1517–1528 (2010)
Ichino, A.: Trilinear forms and the central values of triple product \(L\)-functions. Duke Math. J. 145(2), 281–307 (2008)
Januszewski, F.: Non-abelian\(p\)-adic Rankin-Selberg\(L\)-functions and non-vanishing of central\(L\)-values, preprint. arxiv:1708.02616
Katok, S., Sarnak, P.: Heegner points, cycles and Maass forms. Israel J. Math. 84, 193–227 (1993)
Kim, H.: Functoriality for the exterior square of \(GL_4\) and symmetric fourth of \(GL_2\), with Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak. J. Am. Math. Soc. 16(1), 139–183 (2003)
Li, X.: The central value of the Rankin-Selberg \(L\)-functions. Geom. Funct. Anal. 18, 1660–1695 (2009)
Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. (2) 1(163), 165–219 (2006)
Luo, W.: Equidistribution of Hecke eigenforms on the modular surface. Proc. Am. Math. Soc. 131(1), 21–27 (2003)
Luo, W., Sarnak, P.: Quantum variance for Hecke eigenforms. Ann. Sci. École Norm. Sup. (4) 5(37), 769–799 (2004)
Martin, K., Whitehouse, D.: Central \(L\)-values and toric periods for \({\rm GL}(2)\). Int. Math. Res. Not. IMRN 2009(1), 141–191 (2008). (Art. ID rnn127)
Magnus, W., Oberhettinger, F., Soni, R.: Formulas and Theorems for the Special Functions of Mathematical Physics (Third edition). In: Einzeldarstellungen mit besonderer Berücksichtingung der Anwendungsgebiete, vol. 52. Springer, New York (1966)
Motohashi, Y.: Spectral mean values of Maass wave form \(L\)-functions. J. Number Theory 42(3), 258–284 (1992)
Popa, A.A.: Central values of Rankin \(L\)-series over real quadratic fields. Composition Math. 142, 811–866 (2006)
Reznikov, A.: Non-vanishing of periods of automorphic functions. Forum Math. 13, 485–493 (2001)
Roelcke, W.: Über die Wellengleichung bei Grenzkreisgruppen erster Art. S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1953/1955 (1953/1955), 159–267 (1956)
Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994)
Sarnak, P., Zhao, P.: The quantum variance of the modular surface, With an appendix by Michael Woodbury. Ann. Sci. Éc. Norm. Supér. (4) 5(52), 1155–1200 (2019)
Soundararajan, K.: Quantum unique ergodicity for \({\rm SL}_2(\mathbb{Z})\backslash \mathbb{H}\). Ann. Math. 2nd Ser. 172, 1529–1538 (2010)
Sugiyama, S., Tsuzuki, M.: An explicit trace formula of Jacquet-Zagier type for Hilbert modular forms. J. Funct. Anal. 275(11), 2978–3064 (2018)
Waldspurger, J.-L.: Sur les valeurs de certaines fonctions \(L\) automorphes en leur centre de symetrie. Comp. Math. 54, 173–242 (1985)
Watson, T.: Rankin triple products and quantum chaos, Ph.D Thesis (Princeton, 2002). arxiv:0810.0425
Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Lecture Notes in Math, vol. 627, pp. 105–169. Springer, New York (1977)
Zagier, D.: Eisenstein series and the Riemann zeta-function, automorphic forms, representation theory and arithmetic. Bombay,: Tata Inst. Fund. Res. Studies in Math., 10, Tata Inst. Fundamental Res. Bombay 1981, 275–301 (1979)
Zhang, S.-W.: Gross-Zagier formula for \({\rm GL}_2\). Asian J. Math. 5, 183–290 (2001)
Acknowledgements
The authors would like to thank the anonymous referee for careful reading of the draft. The first author was supported by Grant-in-Aid for Research Activity Start-up 18H05835. The second author was supported by Grant-in-Aid for Scientific research (C) 15K04795.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sugiyama, S., Tsuzuki, M. Quantitative non-vanishing of central values of certain L-functions on \({{\text {GL}}}(2)\times {{\text {GL}}}(3)\). Math. Z. 301, 1447–1479 (2022). https://doi.org/10.1007/s00209-021-02886-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-021-02886-5