Skip to main content
Log in

Geometric structures related to the braided Thompson groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In previous work, joint with Bux, Fluch, Marschler and Witzel, we proved that the braided Thompson groups are of type \({{\,\mathrm{F}\,}}_\infty \). The proof utilized certain contractible cube complexes, which in this paper we prove are \({{\,\mathrm{CAT}\,}}(0)\). We then use this fact to compute the geometric invariants \(\Sigma ^m(F_{{\text {br}}})\) of the pure braided Thompson group \(F_{{\text {br}}}\). Only the first invariant \(\Sigma ^1(F_{{\text {br}}})\) was previously known. A consequence of our computation is that as soon as a subgroup of \(F_{{\text {br}}}\) containing the commutator subgroup \([F_{{\text {br}}},F_{{\text {br}}}]\) is finitely presented, it is automatically of type \({{\,\mathrm{F}\,}}_\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The notation BG often stands for a classifying space of a group G, so even though there is not actually any risk of confusion we will stick to writing \(V_{{\text {br}}}\) and \(F_{{\text {br}}}\) instead of BV and BF.

References

  1. Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129(3), 445–470 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bieri, R., Renz, B.: Valuations on free resolutions and higher geometric invariants of groups. Comment. Math. Helv. 63(3), 464–497 (1988)

    Article  MathSciNet  Google Scholar 

  3. Bieri, R., Neumann, W.D., Strebel, R.: A geometric invariant of discrete groups. Invent. Math. 90(3), 451–477 (1987)

    Article  MathSciNet  Google Scholar 

  4. Bieri, R., Geoghegan, R., Kochloukova, D.H.: The sigma invariants of Thompson’s group \(F\). Groups Geom. Dyn. 4(2), 263–273 (2010)

    Article  MathSciNet  Google Scholar 

  5. Brady, T., Burillo, J., Cleary, S., Stein, M.: Pure braid subgroups of braided Thompson’s groups. Publ. Mat. 52(1), 57–89 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

    Book  Google Scholar 

  7. Brin, M.G.: The algebra of strand splitting. II. A presentation for the braid group on one strand. Internat. J. Algebra Comput. 16(1), 203–219 (2006)

    Article  MathSciNet  Google Scholar 

  8. Brin, M.G.: The algebra of strand splitting. I. A braided version of Thompson’s group \(V\). J. Group Theory 10(6), 757–788 (2007)

    Article  MathSciNet  Google Scholar 

  9. Burillo, J., Cleary, S.: Metric properties of braided Thompson’s groups. Indiana Univ. Math. J. 58(2), 605–615 (2009)

    Article  MathSciNet  Google Scholar 

  10. Bux, K.-U.: Finiteness properties of soluble arithmetic groups over global function fields. Geom. Topol. 8, 611–644 (2004)

    Article  MathSciNet  Google Scholar 

  11. Bux, K.-U., Gonzalez, C.: The Bestvina-Brady construction revisited: geometric computation of \(\Sigma \)-invariants for right-angled Artin groups. J. London Math. Soc. (2) 60(3), 793–801 (1999)

    Article  MathSciNet  Google Scholar 

  12. Bux, K.-U., Fluch, M.G., Marschler, M., Witzel, S., Zaremsky, M.C.B.: The braided Thompson’s groups are of type \({\rm F_\infty } \). J. Reine Angew. Math. 718, 59–101 (2016). (With an appendix by Zaremsky.)

    Article  MathSciNet  Google Scholar 

  13. Dehornoy, P.: The group of parenthesized braids. Adv. Math. 205(2), 354–409 (2006)

    Article  MathSciNet  Google Scholar 

  14. Farb, B., Margalit, D.: A primer on mapping class groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  15. Farley, D.S.: Finiteness and \({\rm CAT(0)}\) properties of diagram groups. Topology 42(5), 1065–1082 (2003)

    Article  MathSciNet  Google Scholar 

  16. Geoghegan, R., Mihalik, M.L., Sapir, M., Wise, D.T.: Ascending HNN extensions of finitely generated free groups are Hopfian. Bull. Lond. Math. Soc. 33(3), 292–298 (2001)

    Article  MathSciNet  Google Scholar 

  17. Gromov M.: Hyperbolic groups. In: Essays in group theory, vol 8 of Math. Sci. Res. Inst. Publ., pages 75–263. Springer, New York (1987)

  18. Haglund, F.: Finite index subgroups of graph products. Geom. Dedicata 135, 167–209 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kenneth S.B.: Finiteness properties of groups. In: Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), vol 44, pp 45–75 (1987)

  20. Koban, N., McCammond, J., Meier, J.: The BNS-invariant for the pure braid groups. Groups Geom. Dyn. 9(3), 665–682 (2015)

    Article  MathSciNet  Google Scholar 

  21. Leary, I.J.: A metric Kan–Thurston theorem. J. Topol. 6(1), 251–284 (2013)

    Article  MathSciNet  Google Scholar 

  22. Lodha, Y., Moore, J.T.: A nonamenable finitely presented group of piecewise projective homeomorphisms. Groups Geom. Dyn. 10(1), 177–200 (2016)

    Article  MathSciNet  Google Scholar 

  23. Meier, J., Meinert, H., VanWyk, L.: Higher generation subgroup sets and the \(\Sigma \)-invariants of graph groups. Comment. Math. Helv. 73(1), 22–44 (1998)

    Article  MathSciNet  Google Scholar 

  24. Meier, J., Meinert, H., VanWyk, L.: On the \(\Sigma \)-invariants of Artin groups. Topology Appl. 110(1), 71–81 (2001). (Geometric topology and geometric group theory (Milwaukee, WI, 1997))

    Article  MathSciNet  Google Scholar 

  25. Meinert, H.: Actions on \(2\)-complexes and the homotopical invariant \(\Sigma ^2\) of a group. J. Pure Appl. Algebra 119(3), 297–317 (1997)

    Article  MathSciNet  Google Scholar 

  26. Quillen, D.: Homotopy properties of the poset of nontrivial \(p\)-subgroups of a group. Adv. Math. 28(2), 101–128 (1978)

    Article  MathSciNet  Google Scholar 

  27. Stefan, W., Matthew, C.B.Z.: The \(\Sigma \)-invariants of Thompson’s group \(F\) via Morse theory. In: Topological methods in group theory, volume 451 of London Math. Soc. Lecture Note Ser., pages 173–193. Cambridge Univ. Press, Cambridge (2018)

  28. Stein, M.: Groups of piecewise linear homeomorphisms. Trans. Am. Math. Soc. 332(2), 477–514 (1992)

    Article  MathSciNet  Google Scholar 

  29. Zaremsky, M.C.B.: HNN decompositions of the Lodha-Moore groups, and topological applications. J. Topol. Anal. 8(4), 627–653 (2016)

    Article  MathSciNet  Google Scholar 

  30. Zaremsky, M.C.B.: Separation in the BNSR-invariants of the pure braid groups. Publ. Mat. 61(2), 337–362 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zaremsky, M.C.B.: On the \(\Sigma \)-invariants of generalized Thompson groups and Houghton groups. Int. Math. Res. Not. IMRN 19, 5861–5896 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Zaremsky, M.C.B.: On normal subgroups of the braided Thompson groups. Groups Geom. Dyn. 12(1), 65–92 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Thanks are due to Javier Aramayona and Rodrigo de Pool for catching a mistake in a previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. B. Zaremsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaremsky, M.C.B. Geometric structures related to the braided Thompson groups. Math. Z. 300, 2591–2610 (2022). https://doi.org/10.1007/s00209-021-02866-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02866-9

Keywords

Mathematics Subject Classification

Navigation