Skip to main content
Log in

Uniform bounds for lattice point counting and partial sums of zeta functions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove uniform versions of two classical results in analytic number theory. The first is an asymptotic for the number of points of a complete lattice \(\Lambda \subseteq \mathbb {R}^d\) inside the d-sphere of radius R. In contrast to previous works, we obtain error terms with implied constants depending only on d. Secondly, let \(\phi (s) = \sum _n a(n) n^{-s}\) be a ‘well behaved’ zeta function. A classical method of Landau yields asymptotics for the partial sums \(\sum _{n < X} a(n)\), with power saving error terms. Following an exposition due to Chandrasekharan and Narasimhan, we obtain a version where the implied constants in the error term will depend only on the ‘shape of the functional equation’, implying uniform results for families of zeta functions with the same functional equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ange, T.: Le théorème de Schanuel dans les fibrés adéliques hermitiens. Manuscr. Math. 144(3–4), 565–608 (2014)

    Article  MathSciNet  Google Scholar 

  2. Borwein, D., Borwein, J.M., Straub, A.: On lattice sums and Wigner limits. J. Math. Anal. Appl. 414(2), 489–513 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bentkus, V., Götze, F.: On the lattice point problem for ellipsoids. Acta Arith. 80(2), 101–125 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bhargava, M., Taniguchi, T., Thorne, F.: Improved error estimates for the Davenport–Heilbronn theorems. arXiv: https://arxiv.org/abs/2107.12819

  5. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Classics in Mathematics. Springer, Berlin. Corrected reprint of the 1971 edition (1997)

  6. Chandrasekharan, K., Narasimhan, R.: Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. Math. (2) 76, 93–136 (1962)

    Article  MathSciNet  Google Scholar 

  7. Davenport, H.: On a principle of Lipschitz. J. Lond. Math. Soc. 26, 179–183 (1951)

    Article  MathSciNet  Google Scholar 

  8. Debaene, K.: Explicit counting of ideals and a Brun–Titchmarsh inequality for the Chebotarev density theorem. Int. J. Number Theory 15(5), 883–905 (2019)

    Article  MathSciNet  Google Scholar 

  9. Epstein, P.: Zur theorie allgemeiner zetafunctionen. Math. Ann. 56, 615–644 (1903)

    Article  MathSciNet  Google Scholar 

  10. Friedlander, J.B., Iwaniec, H.: Summation formulae for coefficients of \(L\)-functions. Can. J. Math. 57(3), 494–505 (2005)

    Article  MathSciNet  Google Scholar 

  11. Huang, B., Lin, Y., Wang, Z.: Averages of coefficients of a class of degree 3 L-functions. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02186-7

  12. Huang, B.: On the Rankin–Selberg problem. Ramanujan J. (2021). https://doi.org/10.1007/s11139-021-00417-8

  13. Iwaniec, Henryk, K.E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence, RI (2004)

  14. Ivić, A., Krätzel, E., Kühleitner, M., Nowak, W.G.: Lattice points in large regions and related arithmetic functions: recent developments in a very classic topic. In Elementare und analytische Zahlentheorie, volume 20 of Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, pp. 89–128. Franz Steiner Verlag Stuttgart, Stuttgart (2006)

  15. Kass, J., Thorne, F.: What is the height of two points in the plane? In preparation

  16. Landau, E.: Über die Anzahl der Gitterpunkte in gewissen Bereichen, pp. 687–770. Nachrichten von der Gessellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1912)

  17. Landau, E.: Über die Anzahl der Gitterpunkte in gewissen Bereichen, pp. 209–243. Zweite abhandlung. Nachrichten von der Gessellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1915)

  18. Lowry-Duda, D.: On Some Variants of the Gauss Circle Problem. PhD thesis, Brown University, 5 (2017). arXiv:1704.02376

  19. Louboutin, S.: Explicit upper bounds for residues of Dedekind zeta functions and values of \(L\)-functions at \(s=1\), and explicit lower bounds for relative class numbers of CM-fields. Can. J. Math. 53(6), 1194–1222 (2001)

    Article  MathSciNet  Google Scholar 

  20. Sato, M., Shintani, T.: On zeta functions associated with prehomogeneous vector spaces. Ann. Math. 2(100), 131–170 (1974)

    Article  MathSciNet  Google Scholar 

  21. Taniguchi, T., Thorne, F.: Secondary terms in counting functions for cubic fields. Duke Math. J. 162(13), 2451–2508 (2013)

    Article  MathSciNet  Google Scholar 

  22. Watson, G. N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge. Reprint of the second (1944) edition (1995)

  23. Widmer, M.: Counting primitive points of bounded height. Trans. Am. Math. Soc. 362(9), 4793–4829 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Bruce Berndt, Eric Gaudron, Aleksandar Ivić, Jesse Kass, Martin Nowak, Anders Södergren, Jesse Thorner, Martin Widmer, and an anonymous referee for their advice, suggestions, and encouragement. We began this paper at the Mathematical Sciences Research Insitute in Berkeley, CA in Spring 2017, and we would like to thank MSRI for providing an excellent atmosphere in which to work, as well as the National Science Foundation (under Grant No. DMS-1440140) for their financial support of MSRI. The first author was partially supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 0228243, the EPSRC Programme Grant EP/K034383/1 LMF: L-Functions and Modular Forms, and the Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation via the Simons Foundation grant 546235; the second author was partially supported by the JSPS, KAKENHI Grant Numbers JP24654005, JP25707002, and JP17H02835; the third author was partially supported by the National Security Agency under Grant No. H98230-16-1-0051 and by the Simons Foundation under Grant No. 586594.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Thorne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowry-Duda, D., Taniguchi, T. & Thorne, F. Uniform bounds for lattice point counting and partial sums of zeta functions. Math. Z. 300, 2571–2590 (2022). https://doi.org/10.1007/s00209-021-02862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02862-z

Navigation