Skip to main content
Log in

Smoothing of multiple structures on embedded Enriques manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show that given an embedding of an Enriques manifold of index d in a large enough projective space, there will exist embedded multiple structures with conormal bundle isomorphic to the trace zero module of the universal covering map, the universal cover being either a hyperkähler or a Calabi–Yau manifold. We then show that these multiple structures (also known as d-ropes) can be smoothed to smooth hyperkähler or Calabi–Yau manifolds respectively. Hence we obtain a flat family of hyperkähler (or Calabi–Yau) manifolds embedded in the same projective space which degenerates to an embedded d-rope structure on the given Enriques manifold of index d. The above shows that these d-rope structures on the embedded Enriques manifold are points of the Hilbert scheme containing the fibres of the above family. We show that they are smooth points of the Hilbert scheme when \(d=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arapura, D.: Frobenius amplitude and strong vanishing theorems for vector bundles. With an appendix by Dennis S. Keeler. Duke Math. J. 121(2), 231–267 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bănică, C.: Smooth reflexive sheaves. Proceedings of the colloquium on complex analysis and the sixth Romanian-Finnish seminar. Rev. Roumaine Math. Pures Appl. 36(9–10), 571–593 (1991)

    MathSciNet  Google Scholar 

  3. Bayer, D., Eisenbud, D.: Ribbons and their canonical embeddings. Trans. Am. Math. Soc. 347(3), 719–756 (1995)

    Article  MathSciNet  Google Scholar 

  4. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle (French) [Kähler manifolds whose first Chern class is zero]. J. Differ. Geom. 18(4), 755–782 (1984)

    MATH  Google Scholar 

  5. Belmans, P.: Hodge diamond cutter. https://doi.org/10.5281/zenodo.3893510.

  6. Bogomolov, F. A.: The decomposition of Kähler manifolds with a trivial canonical class. (Russian) Mat. Sb. (N.S.) 93(135), 573–575, 630 (1974)

  7. Boissière, S., Nieper-Wisskirchen, M., Sarti, A.: Higher dimensional Enriques varieties and automorphisms of generalized Kummer varieties. J. Math. Pures Appl. 95(5), 553–563 (2011)

    Article  MathSciNet  Google Scholar 

  8. Britze, M., Nieper, M. A.: Hirzebruch–Riemann–Roch formulae on irreducible symplectic Kähler manifolds. https://arxiv.org/abs/math/0101062

  9. Cao, Y., Jiang, C.: Remarks on Kawamata’s effective non-vanishing conjecture for manifolds with trivial first Chern classes. Math. Z. 296(1–2), 615–637 (2020)

    Article  MathSciNet  Google Scholar 

  10. Deopurkar, A.: The canonical syzygy conjecture for ribbons. Math. Z. 288(3–4), 1157–1164 (2018)

    Article  MathSciNet  Google Scholar 

  11. Ellingsrud, G., Göttsche, L., Lehn, M.: On the cobordism class of the Hilbert scheme of a surface. J. Algebr. Geom. 10(1), 81–100 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Fong, L.-Y.: Rational ribbons and deformations of hyperelliptic curves. J. Algebr. Geom. 2(2), 295–307 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Fujiki, A.: On the de Rham cohomology group of a compact Kähler symplectic manifold. Algebr. Geom, Sendai, 1985, 105–165, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam (1987)

  14. Gallego, F.J., González, M., Purnaprajna, B.P.: K3 double structures on Enriques surfaces and their smoothings. J. Pure Appl. Algebra 212(5), 981–993 (2008)

    Article  MathSciNet  Google Scholar 

  15. Gallego, F.J., González, M., Purnaprajna, B.P.: An infinitesimal condition to smooth ropes. Rev. Mat. Comput. 26(1), 253–269 (2013)

    Article  MathSciNet  Google Scholar 

  16. Gallego, F.J., González, M., Purnaprajna, B.P.: Deformation of canonical morphisms and the moduli of surfaces of general type. Invent. Math. 182(1), 1–46 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gallego, F.J., González, M., Purnaprajna, B.P.: Canonical double covers of minimal rational surfaces and the non-existence of carpets. J. Algebra 374, 231–244 (2013)

    Article  MathSciNet  Google Scholar 

  18. Gallego, F.J., González, M., Purnaprajna, B.P.: Deformations of canonical triple covers. J. Algebra 463, 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  19. Gallego, F.J., Purnaprajna, B.P.: Degenerations of K3 Surfaces in Projective Space. Trans. Am. Math. Soc. 349(6), 2477–2492 (1997)

    Article  MathSciNet  Google Scholar 

  20. González, M.: Smoothing of ribbons over curves. J. Reine Angew. Math. 591, 201–235 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Göttsche, L.: Hilbert Schemes of Zero Dimensional Subschemes of Smooth Varieties Lecture Notes in Mathematics, 1572. Springer-Verlag, Berlin (1994)

    Book  Google Scholar 

  22. Green, M.L.: Koszul cohomology and the geometry of projective varieties. J. Differ. Geom. 19(1), 125–171 (1984)

    Article  MathSciNet  Google Scholar 

  23. Gross, M., Huybrechts, D., Joyce, D., Calabi–Yau manifolds and related geometries. Lectures from the Summer School held in Nordfjordeid, : Universitext, p. 2003. Springer-Verlag, Berlin (2001)

  24. Hayashi, T.: Universal covering Calabi–Yau manifolds of the Hilbert schemes of \(n\)-points of Enriques surfaces. Asian J. Math. 21(6), 1099–1120 (2017)

    Article  MathSciNet  Google Scholar 

  25. Huybrechts, D.: Compact hyperkaehler manifolds: basic results. Invent. Math. 135(1), 63–113 (1999)

    Article  MathSciNet  Google Scholar 

  26. Huybrechts, D.: Birational symplectic manifolds and their deformations. J. Differ. Geom. 45(3), 488–513 (1997)

    Article  MathSciNet  Google Scholar 

  27. Mongardi, G., Rapagnetta, A., Saccà, G.: The Hodge diamond of O’Grady’s six-dimensional example. Compos. Math. 154(5), 984–1013 (2018)

    Article  MathSciNet  Google Scholar 

  28. Nieper, M.A.: Hirzebruch–Riemann–Roch formulae on irreducible symplectic Kähler manifolds. J. Algebr. Geom. 12(4), 715–739 (2003)

    Article  MathSciNet  Google Scholar 

  29. O’Grady, K.G.: Desingularized moduli spaces of sheaves on a K3. J. Reine Angew. Math. 512, 49–117 (1999)

    Article  MathSciNet  Google Scholar 

  30. O’Grady, K.G.: A new six-dimensional irreducible symplectic variety. J. Algebr. Geom. 12(3), 435–505 (2003)

    Article  MathSciNet  Google Scholar 

  31. Oguiso, K., Schröer, S.: Enriques manifolds. J. Reine Angew. Math. 661, 215–235 (2011)

    Article  MathSciNet  Google Scholar 

  32. Oguiso, K., Schröer, S.: Periods of Enriques manifolds. Special Issue: In memory of Eckart Viehweg. Pure Appl. Math. Q. 7(4) 1631–1656 (2011)

  33. Popa, M., Schnell, C.: On direct images of pluricanonical bundles. Algebra Number Theory 8(9), 2273–2295 (2014)

    Article  MathSciNet  Google Scholar 

  34. Sawon, J.: Rozansky-Witten invariants of hyperkähler manifolds. PhD thesis, University of Cambridge (1999)

  35. Sernesi, E.: Deformations of Algebraic Schemes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 334. Springer-Verlag, Berlin (2006)

  36. Shafarevich, I.R.: Basic Algebraic Geometry. 1. Varieties in projective space. Second edition. Translated from the : Russian edition and with notes by Miles Reid, p. 1994. Springer-Verlag, Berlin (1988)

  37. Tian, G.: Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric. Mathematical aspects of string theory (San Diego, Calif., 1986), 629–646, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore (1987)

  38. Todorov, A.N.: The Weil–Petersson geometry of the moduli space of \(SU(n\ge 3)\) (Calabi–Yau) manifolds. I. Comm. Math. Phys. 126(2), 325–346 (1989)

    Article  Google Scholar 

  39. Wehler, J.: Cyclic coverings: deformation and Torelli theorem. Math. Ann. 274(3), 443–472 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to our advisor Professor B. P. Purnaprajna for suggesting to us this problem and for supporting us throughout this work. We thank Professor Keiji Oguiso for his comments on an earlier draft of this paper and for pointing out to us the work of Taro Hayashi ([24]). We thank the anonymous referee and Professor Olivier Debarre for helpful suggestions and corrections that substantially helped in the improvement of the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debaditya Raychaudhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we discuss the condition that an embedding \(Y\hookrightarrow \mathbb {P}^N\) of the Enriques manifold satisfies \(N\ge 2\dim (Y)+1\). It is known that any variety Y can be embedded inside \(\mathbb {P}^{2\dim (Y)+1}\) (see [36]). We show that \(N\ge 2\dim (Y)+1\) is always the case if Y is an Enriques manifold of index two and X is one of the known classes of hyperkähler manifolds of dimension six .

Proposition 5.1

Let Y be an Enriques manifold of dimension six and index two whose universal double cover X is either \(K3^{[3]}\) or \(K^3(A)\). Let \(Y\hookrightarrow \mathbb {P}^N\) be an embedding. Then \(N\ge 13\).

Proof

It is enough to show that Y can not be embedded inside \(\mathbb {P}^{12}\). For the sake of contradiction, assume \(Y\hookrightarrow \mathbb {P}^{12}\) is a degree d embedding. We have that \(\pi :X\rightarrow Y\) is the universal cover. Let \(\mathscr {N}\) be the normal bundle of the embedding \(Y\hookrightarrow \mathbb {P}^{12}\) and K be the canonical bundle of Y.

From the Euler sequence on \(\mathbb {P}^{12}\) we get that

$$\begin{aligned} c_t(T_{\mathbb {P}^{12}})=(1+ht)^{13} \end{aligned}$$
(5.1)

where \(h\in A^1(\mathbb {P}^{12})\) is the class of a hyperplane.

Suppose \(\mathscr {N}\) is the normal bundle for the embedding. From the following exact sequence

$$\begin{aligned} 0\rightarrow T_Y\rightarrow T_{\mathbb {P}^{12}}\vert _Y\rightarrow \mathscr {N}\rightarrow 0 \end{aligned}$$
(5.2)

we see that \(c_t(T_Y)\cdot c_t(\mathscr {N})=c_t(T_{\mathbb {P}^{12}}\vert _Y)\). That gives us

$$\begin{aligned} \left( 1-Kt+\displaystyle \sum _{i=2}^{i=6}c_i(Y)t^i\right) \left( 1+\displaystyle \sum _{i=1}^{i=6}c_i(\mathscr {N})t^i\right) =\displaystyle \sum _{i=0}^{i=6}\left( {\begin{array}{c}13\\ i\end{array}}\right) H^it^{6-i} \end{aligned}$$
(5.3)

where \(H\in A^1(Y)\) is the class of a hyperplane section.

Expanding the equality above we get the following equations

$$\begin{aligned}&c_1(\mathscr {N})=13H+K \end{aligned}$$
(5.4)
$$\begin{aligned}&c_2(\mathscr {N})=\left( {\begin{array}{c}13\\ 2\end{array}}\right) H^2+Kc_1(\mathscr {N})-c_2(Y) \end{aligned}$$
(5.5)
$$\begin{aligned}&c_3(\mathscr {N})=\left( {\begin{array}{c}13\\ 3\end{array}}\right) H^3+Kc_2(\mathscr {N})-c_2(Y)c_1(\mathscr {N})-c_3(Y) \end{aligned}$$
(5.6)
$$\begin{aligned}&c_4(\mathscr {N})=\left( {\begin{array}{c}13\\ 4\end{array}}\right) H^4+Kc_3(\mathscr {N})-c_2(Y)c_2(\mathscr {N})-c_3(Y)c_1(\mathscr {N})-c_4(Y) \end{aligned}$$
(5.7)
$$\begin{aligned}&c_5(\mathscr {N})=\left( {\begin{array}{c}13\\ 5\end{array}}\right) H^5+Kc_4(\mathscr {N})-c_2(Y)c_3(\mathscr {N})-c_3(Y)c_2(\mathscr {N})-c_4(Y)c_1(\mathscr {N})-c_5(Y) \end{aligned}$$
(5.8)
$$\begin{aligned}&\left( {\begin{array}{c}13\\ 6\end{array}}\right) H^6=c_6(\mathscr {N})-Kc_5(\mathscr {N})+c_2(Y)c_4(\mathscr {N})+c_3(Y)c_3(\mathscr {N})\nonumber \\&\quad +c_4(Y)c_2(\mathscr {N})+c_5(Y)c_1(\mathscr {N})+c_6(Y) \end{aligned}$$
(5.9)

Next we put the values of \(c_i(\mathscr {N})\) for \(i=1,\dots ,5\) in  (5.9) and pull them back to X to get the following (recall that the odd Chern classes of X are trivial and \(c_6(\mathscr {N})=Y.Y=d^2\))

$$\begin{aligned} \begin{aligned}&\left( {\begin{array}{c}13\\ 6\end{array}}\right) \dfrac{(\pi ^*H)^6}{2}=\left( \dfrac{(\pi ^*H)^6}{2}\right) ^2+\left( {\begin{array}{c}13\\ 4\end{array}}\right) \dfrac{(\pi ^*H)^4}{2}c_2(X)+\left( {\begin{array}{c}13\\ 2\end{array}}\right) \dfrac{(\pi ^*H)^2}{2}c_4(X)\\&\quad -\left( {\begin{array}{c}13\\ 2\end{array}}\right) \dfrac{(\pi ^*H)^2}{2}\left( c_2(X)\right) ^2\\&\quad +\dfrac{1}{2}\left( \left( c_2(X)\right) ^3-2c_2(X)c_4(X)+c_6(X)\right) . \end{aligned} \end{aligned}$$
(5.10)

Let \(q(-,-)\) and c be the Beauville–Bogomolov–Fujiki form and Fujiki constant respectively on X. We know the value of the constants \(a_i\) (see  (2.1)) if X is of type \(K3^{[3]}\) or \(K^3(A)\).

Suppose X is of the form \(K3^{[3]}\). The following Riemann–Roch formula has been proven by Ellingsrud, Göttsche and Lehn (see [11]) when X is of \(K3^{[3]}\) type. Fujiki constant takes the value 15.

$$\begin{aligned} \chi (L) = \left( {\begin{array}{c}\frac{1}{2}q(L)+4\\ 3\end{array}}\right) . \end{aligned}$$
(5.11)

Comparing degree-two terms of the above expression and the usual Riemann–Roch we find that

$$\begin{aligned} c_2(X)L^4=108q(L). \end{aligned}$$
(5.12)

Note that this gives us the value of the constant \(C(c_2)\) as well (see Theorem  2.4 for the definition).

$$\begin{aligned} C(c_2)=108 \end{aligned}$$
(5.13)

Comparing degree-one terms of  (5.11) and the usual Riemann–Roch expression we get

$$\begin{aligned} 3(c_2(X))^2L^2-c_4(X)L^2=3120q(L). \end{aligned}$$
(5.14)

Recall that we have the following equality on hyperkähler manifolds of dimension 2n for a line bundle L (see [28] and [9], proof of Theorem 3.2)

$$\begin{aligned} \int _X\sqrt{\text {td}(X)}L^{2n-4}=(2n-4)!\left( {\begin{array}{c}n\\ n-2\end{array}}\right) \lambda (L)^{n-2}\int _X\sqrt{\text {td}(X)} \end{aligned}$$
(5.15)

where \(\lambda (L)\) is the characteristic value given by the following expression

$$\begin{aligned} \lambda (L)=\dfrac{12c}{(2n-1)C(c_2(X))}q(L). \end{aligned}$$
(5.16)

Comparing degree-one terms of the left hand side and right hand side of  (5.15) and using  (5.13) and the fact that \(\int _X\sqrt{\text {td}(X)}=\dfrac{9}{16}\) (see [34], Proposition 19) we get the following equality

$$\begin{aligned} 7(c_2(X))^2L^2-4c_4(X)L^2=6480q(L). \end{aligned}$$
(5.17)

We solve  (5.14) and  (5.17) to get that \((c_2(X))^2L^2=1200q(L)\text { and }c_4(X)L^2=480q(L)\).

Suppose X is of the form \(K^3(A)\). The Riemann–Roch formula for this case is given below, it was calculated by Britze–Nieper (see [8]). The value of the Fujiki constant in this case is 60.

$$\begin{aligned} \chi (L) = 4 \left( {\begin{array}{c}\frac{1}{2}q(L)+3\\ 3\end{array}}\right) . \end{aligned}$$
(5.18)

We carry out the same computations (\(\int _X\sqrt{\text {td}(X)}=\dfrac{2}{3}\) by [34], Proposition 21) to get that

$$\begin{aligned} (c_2(X))^2L^2=1920q(L)\text { and }c_4(X)L^2=480q(L). \end{aligned}$$
(5.19)

Now, \(c_2(X)^3-2c_2(X)c_4(X)+c_6(X)\) can be calculated form the Hodge diamond (see [34], Appendix B). The Hodge diamonds of \(K3^{[3]}\) and \(K^3(A)\) are given below (see [5]).

figure f

Let \(\chi ^p(X)=\sum (-1)^qh^{p,q}(X)\). Then [34], Appendix B gives the following equations.

$$\begin{aligned}&c_2(X)^3=7272\chi ^0(X)-184\chi ^1(X)-8\chi ^2(X), \end{aligned}$$
(5.20)
$$\begin{aligned}&c_2(X)c_4(X)=1368\chi ^0(X)-208\chi ^1(X)-8\chi ^2(X), \end{aligned}$$
(5.21)
$$\begin{aligned}&c_6(X)=36\chi ^0(X)-16\chi ^1(X)+4\chi ^2(X). \end{aligned}$$
(5.22)

We set \(L=\pi ^*H\) and \(x=q(\pi ^*H)\). We put the values of \((c_2(X))^2\), \(c_4(X)L^2\) and \(c_2(X)^3-2c_2(X)c_4(X)+c_6(X)\) calculated above in  (5.9) to get an equation in x.

If X is of the form \(K3^{[3]}\) the equation we obtain is the following

$$\begin{aligned} 51480x^3=225x^6+154440x^2-112320x+21120. \end{aligned}$$
(5.23)

When X is of the form \(K^3(A)\) the equation we obtain is given below

$$\begin{aligned} 51480x^3=900x^6+102960x^2-56160x+8664. \end{aligned}$$
(5.24)

That concludes the proof since neither  (5.23) nor  (5.24) has positive even integer solution.\(\square \)

Now we proceed to prove the same when the universal cover X is O’Grady’s six dimensional hyperkähler manifold \(\mathscr {M}_6\). In order to do that we follow the same procedure but first we need \(\int _{\mathscr {M}_6}\sqrt{\text {td}(\mathscr {M}_6)}\) which we calculate below.

Lemma 5.2

\(\int _{\mathscr {M}_6}\sqrt{\text {td}(\mathscr {M}_6)}=\dfrac{2}{3}\).

Proof

We know the Hodge diamond of \(\mathscr {M}_6\) by Mongardi-Rapagnetta-Saccà’s computation (see [27]).

Hodge diamond of \(\mathscr {M}_6\)

$$ \begin{array}{ccccccccccccc} &{} &{} &{} &{} &{} &{} 1 &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} &{} 0 &{} &{} 0 &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} 1 &{} &{} 6 &{} &{} 1 &{} &{} &{} &{} \\ &{} &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} &{} \\ &{} &{} 1 &{} &{} 12 &{} &{} 173 &{} &{} 12 &{} &{} 1 &{} &{} \\ &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} \\ 1 &{} &{} 6 &{} &{} 173 &{} &{} 1144 &{} &{} 173 &{} &{} 6 &{} &{} 1 \\ &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} \\ &{} &{} 1 &{} &{} 12 &{} &{} 173 &{} &{} 12 &{} &{} 1 &{} &{} \\ &{} &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} 0 &{} &{} &{} \\ &{} &{} &{} &{} 1 &{} &{} 6 &{} &{} 1 &{} &{} &{} &{} \\ &{} &{} &{} &{} &{} 0 &{} &{} 0 &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} &{} &{} 1 &{} &{} &{} &{} &{} &{} \\ \end{array}$$

As before \(\chi ^p(X)=\sum (-1)^qh^{p,q}(X)\). Then we have \(\chi ^0=4\), \(\chi ^1=-24\), \(\chi ^2=348\).

It has been proven by Sawon (see [34]) that \(\int _{\mathscr {M}_6}\sqrt{\text {td}(\mathscr {M}_6)}\!=\!-\dfrac{1}{48^3\cdot 3!}\left( s_2^3\!+\!\dfrac{12}{5}s_2s_4\!+\!\dfrac{64}{35}s_6\right) \) where

$$\begin{aligned} s_2^3=&-58176\chi ^0+1472\chi ^1+64\chi ^2,\quad s_2s_4=-18144\chi ^0-928\chi ^1-32\chi ^2,\\ s_6=&-6552\chi ^0-784\chi ^1-56\chi ^2. \end{aligned}$$

A direct computation yields the result.

Once we know the value of \(\int _{\mathscr {M}_6}\sqrt{\text {td}(\mathscr {M}_6)}\) we can carry out the procedure explained in the proof of Proposition  5.1.

Proposition 5.3

Let Y be an Enriques manifold and \(Y\hookrightarrow \mathbb {P}^N\) be a closed embedding. Assume that the universal cover X of Y is O’Grady’s six dimensional hyperkähler manifold \(\mathscr {M}_6\). Then \(N\ge 13\).

Proof

Recall that on \(\mathscr {M}_6\) the Riemann–Roch expression is the following (see [9])

$$\begin{aligned} \chi (L)=4\left( {\begin{array}{c}\lambda (L)+3\\ 3\end{array}}\right) \end{aligned}$$
(5.25)

where \(\lambda (L)\) is the characteristic value given by  (5.16).

Comparing degree-one terms of this expression and the usual Riemann–Roch expression, we get

$$\begin{aligned} \dfrac{1}{12}c_2(\mathscr {M}_6)\cdot \dfrac{1}{24}L^4=4(\lambda (L))^2 \end{aligned}$$
(5.26)

Using \(c_2(\mathscr {M}_6)L^4=C(c_2(\mathscr {M}_6))q(L)\) and the value of the Fujiki constant (which is 60), we get that \(C(c_2(\mathscr {M}_6))=288\). We use them to get the following two equations; the first one is obtained by comparing degree-two terms of  (5.25) and the usual Riemann–Roch expression, the second one is a consequence of  (5.15).

$$\begin{aligned}&3(c_2(\mathscr {M}_6))^2L^2-c_4(\mathscr {M}_6)L^2=5280q(L)\end{aligned}$$
(5.27)
$$\begin{aligned}&7(c_2(\mathscr {M}_6))^2L^2-4c_4(\mathscr {M}_6)L^2=11520q(L) \end{aligned}$$
(5.28)

We solve the above two equations to get \((c_2(\mathscr {M}_6))^2L^2=1920q(L)\) and \(c_4(\mathscr {M}_6)L^2=480q(L)\). Moreover the values of \((c_2(\mathscr {M}_6))^3\), \(c_2(\mathscr {M}_6)c_4(\mathscr {M}_6)\) and \(c_6(\mathscr {M}_6)\) have been calculated in [27], Corollary 6.8. We put these values in  (5.10) by setting \(L=\pi ^*(H)\) where H is the class of a hyperplane section of Y and \(\pi \) is the map from the universal cover. As before, setting \(x=q(\pi ^*(H))\), we obtain

$$\begin{aligned} 51480x^3=900x^6+102960x^2-56160x+8640 \end{aligned}$$
(5.29)

which has no positive integer solution. That concludes the proof.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, J., Raychaudhury, D. Smoothing of multiple structures on embedded Enriques manifolds. Math. Z. 300, 1241–1263 (2022). https://doi.org/10.1007/s00209-021-02818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02818-3

Keywords

Mathematics Subject Classification

Navigation