Skip to main content
Log in

Cyclic sieving and orbit harmonics

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Orbit harmonics is a tool in combinatorial representation theory which promotes the (ungraded) action of a linear group G on a finite set X to a graded action of G on a polynomial ring quotient by viewing X as a G-stable point locus in \({\mathbb {C}}^n\). The cyclic sieving phenomenon is a notion in enumerative combinatorics which encapsulates the fixed-point structure of the action of a finite cyclic group C on a finite set X in terms of root-of-unity evaluations of an auxiliary polynomial X(q). We apply orbit harmonics to prove cyclic sieving results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. up to duality, but permutation representations are self-dual

References

  1. Armstrong, D., Rhoades, B., Reiner, V.: Parking spaces. Adv. Math. 269, 647–706 (2015)

    Article  MathSciNet  Google Scholar 

  2. Barcelo, H., Reiner, V., Stanton, D.: Bimahonian distributions. J. Lond. Math. Soc. 77(3), 627–646 (2008)

    Article  MathSciNet  Google Scholar 

  3. Berget, A., Eu, S.-P., Reiner, V.: Constructions for cyclic sieving phenomena. SIAM J. Discrete Math 25, 1297–1314 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bessis, D., Reiner, V.: Cyclic sieving of noncrossing partitions. Ann. Combin. 15, 197–222 (2011)

    Article  Google Scholar 

  5. Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77(4), 778–782 (1955)

    Article  MathSciNet  Google Scholar 

  6. Chmutova, T., Etingof, P.: On some representations of the rational Cherednik algebra. Represent. Theory 7, 641–650 (2003)

    Article  MathSciNet  Google Scholar 

  7. Douvropoulos, T.: Cyclic sieving for reduced reflection factorizations of the Coxeter element. Sém. Loth. Comb. 80B, 12 (2018) (Article # 86)

  8. Fukukawa, Y., Harada, M., Masuda, M.: The equivariant cohomology rings of Peterson varieties. J. Math. Soc. Jpn. 67(3), 1147–1159 (2015)

    Article  MathSciNet  Google Scholar 

  9. Garsia, A.M., Procesi, C.: On certain graded \(S_n\)-modules and the \(q\)-Kostka polynomials. Adv. Math. 94, 82–138 (1992)

    Article  MathSciNet  Google Scholar 

  10. Griffin, S.: Ordered set partitions, Garsia–Procesi modules, and rank varieties. Trans. Am. Math. Soc. 374(4), 2609–2660 (2021)

  11. Haglund, J., Rhoades, B., Shimozono, M.: Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture. Adv. Math. 329, 851–915 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kostant, B.: Lie group representations on polynomial rings. Bull. Am. Math. Soc. 69(4), 518–526 (1963)

    Article  MathSciNet  Google Scholar 

  13. Kraśkiewicz, W., Weyman, J.: Algebra of coinvariants and the action of a Coxeter element. Bayreuth. Math. Schr. 63, 265–284 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Green polynomials and Hall-Littlewood functions at roots of unity. Eur. J. Combin. 15, 173–180 (1994)

    Article  MathSciNet  Google Scholar 

  15. Morita, H., Nakajima, T.: A formula of Lascoux–Leclerc–Thibon and representations of symmetric groups. J. Algebraic Comb. 24(1), 45–60 (2006)

    Article  MathSciNet  Google Scholar 

  16. Rao, S., Suk, J.: Dihedral sieving phenomena. Discrete Math. 343(6), 111849 (2020)

    Article  MathSciNet  Google Scholar 

  17. Reiner, V., Stanton, D., White, D.: The cyclic sieving phenomenon. J. Comb. Theory Ser. A 108, 17–50 (2004)

    Article  MathSciNet  Google Scholar 

  18. Rhoades, B.: Hall-Littlewood polynomials and fixed point enumeration. Discrete Math. 310(4), 869–876 (2010)

    Article  MathSciNet  Google Scholar 

  19. Rhoades, B.: Evidence for parking conjectures. J. Comb. Theory Ser. A 146, 81–127 (2017)

    Article  MathSciNet  Google Scholar 

  20. Springer, T.A.: Regular elements of finite reflection groups. Invent. Math. 29, 159–198 (1974)

    Article  MathSciNet  Google Scholar 

  21. Stanley, R.P.: Invariants of finite groups and their applications to combinatorics. Bull. Am. Math. Soc. 1, 475–511 (1979)

    Article  MathSciNet  Google Scholar 

  22. Swanson, J.: The dihedral sieving phenomenon (2021) (In preparation)

  23. Tanisaki, T.: Defining ideals of the closures of conjugacy classes and representations of the Weyl groups. Tohoku J. Math. 34, 575–585 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J. Oh was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A3A13076804). B. Rhoades was partially supported by NSF Grant DMS-1500838 and DMS-1953781. The authors are grateful to Soichi Okada, Vic Reiner, and Josh Swanson for helpful conversations. The authors also thank referees for careful reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeseong Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J., Rhoades, B. Cyclic sieving and orbit harmonics. Math. Z. 300, 639–660 (2022). https://doi.org/10.1007/s00209-021-02800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02800-z

Keywords

Navigation