Skip to main content
Log in

Convex integration theory without integration

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We replace the usual Convex Integration formula by a Corrugation Process and introduce the notion of Kuiper differential relations. This notion provides a natural framework for the construction of solutions with self-similarity properties. We consider the case of the totally real relation, we prove that it is Kuiper and we state a totally real isometric embedding theorem. We then show that the totally real isometric embeddings obtained by the Corrugation Process exhibit a self-similarity property. Kuiper relations also enable a uniform expression of the Corrugation Process that no longer involves integrals. We apply the Corrugation Process to build a new explicit immersion of \({\mathbb {R}}P^2\) inside \({\mathbb {R}}^3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahern, P., Rudin, W.: Totally real embeddings of \(S^3\) in \({\mathbb{C}}^3\). Proc. Am. Math. Soc. 94, 460–462 (1985)

    MATH  Google Scholar 

  2. Apery, F.: La surface de Boy. (Boy’s surface). Adv. Math. 61, 185–266 (1986)

    Article  MathSciNet  Google Scholar 

  3. Apery, F.: Models of the real projective plane. Computer graphics of Steiner and Boy surfaces. Computer Graphics and Mathematical Models. Braunschweig/Wiesbaden: Friedr. Vieweg & Sohn. XI (1987)

  4. Bartzos, E., Borrelli, V., Denis, R., Lazarus, F., Rohmer, D., Thibert, B.: An explicit isometric reduction of the unit sphere into an arbitrarily small ball. Found. Comput. Math. 109(4), 1015–1042 (2018)

    Article  MathSciNet  Google Scholar 

  5. Borrelli, V.: Maslov form and \(J\)-volume of totally real immersions. J. Geom. Phys. 25(3–4), 271–290 (1998)

    Article  MathSciNet  Google Scholar 

  6. Borrelli, V., Jabrane, S., Lazarus, F., Thibert, B.: Flat tori in three-dimensional space and convex integration. Proc. Natl. Acad. Sci. USA 109(19), 7218–7223 (2012)

    Article  MathSciNet  Google Scholar 

  7. Borrelli, V., Jabrane, S., Lazarus, F., Thibert, B.: Isometric embeddings of the square flat torus in ambient space. Ensaios Matemáticos. Sociedade Brasileira de Matemática, Rio de Janeiro 24(2013)

  8. Boy, W.: Über die Abbildung der projektiven Ebene auf eine im Endlichen geschlossene singularitätenfreie Fläche. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 1901, 20–33 (1901)

    MATH  Google Scholar 

  9. Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)

    Article  MathSciNet  Google Scholar 

  10. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. Math. 189(1), 101–144 (2019)

    Article  MathSciNet  Google Scholar 

  11. Colombo, M., De Lellis, C., De Rosa, L.: Ill-posedeness of leray solutions for the ipodissipative navier–stokes equations (2017)

  12. Conti, S., De Lellis, C., Székelyhidi Jr., L.: \(h\)-principle and rigidity for \(C^{1,\alpha }\) isometric embeddings. In: Nonlinear partial differential equations, Abel Symp., vol. 7, pp. 83–116. Springer, Heidelberg (2012)

  13. D’Ambra, G.: Nash \(C^ 1\)-embedding theorem for Carnot-Carathéodory metrics. Differ. Geom. Appl. 5(2), 105–119 (1995)

    Article  MathSciNet  Google Scholar 

  14. D’Ambra, G.: An application to the \(h\)-principle to \(C^1\)-isometric immersions in contact manifolds. Commun. Anal. Geom. 8(2), 347–373 (2000)

    Article  MathSciNet  Google Scholar 

  15. D’Ambra, G., Datta, M.: Isotropic \(C^1\)-immersions in a pseudo-Riemannian manifold. Differ. Geom. Appl. 24(2), 142–149 (2006)

    Article  Google Scholar 

  16. D’Ambra, G., Loi, A.: A symplectic version of Nash \(C^ 1\)-isometric embedding theorem. Differ. Geom. Appl. 16(2), 167–179 (2002)

    Article  Google Scholar 

  17. De Lellis, C., Székelyhidi Jr., L.: The euler equation as a differential inclusion. Annals of Math. 170(3) (2009)

  18. Eliashberg, Y., Mishachev, N.: Introduction to the \(h\)-principle. Graduate Studies in Mathematics, A.M.S., Providence 48(2002)

  19. Francis, G.: A topological picturebook. Springer-Verlag, New York (1987)

    MATH  Google Scholar 

  20. Geiges, H.: \(h\)-principles and flexibility in geometry. Mem. Amer. Math. Soc. 164(779) (2003)

  21. Goodman, S., Howard, G.: Generic maps of the projective plane with a single triple point. Math. Proc. Camb. Philos. Soc. 152(3), 455–472 (2012)

    Article  MathSciNet  Google Scholar 

  22. Gromov, M.: Convex integration of differential relations. I. Math USSR Izvestia 7, 329–343 (1973)

    Article  MathSciNet  Google Scholar 

  23. Gromov, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MathSciNet  Google Scholar 

  24. Gromov, M.: Partial differential relations. Springer-Verlag, Berlin (1986)

    Book  Google Scholar 

  25. Gromov, M.: Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems. Bull. Am. Math. Soc., New Ser. 54(2), 173–245 (2017)

    Article  MathSciNet  Google Scholar 

  26. Hungerbühler, N., Mettler, T., Wasem, M.: Convex integration and Legendrian approximation of curves. J. Convex Anal. 24(1), 309–317 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188(3), 871–963 (2018)

    Article  MathSciNet  Google Scholar 

  28. Kuiper, N.: On \(C^1\)-isometric imbeddings. Indag. Math. 17, 545–556 (1955)

    Article  Google Scholar 

  29. Kusner, R.: Conformal geometry and complete minimal surfaces. Bull. Am. Math. Soc., New Ser. 17, 291–295 (1987)

    Article  MathSciNet  Google Scholar 

  30. Le Donne, E.: Lipschitz and path isometric embeddings of metric spaces. Geom. Dedicata 166, 47–66 (2013)

    Article  MathSciNet  Google Scholar 

  31. Levy, S.: Making waves. A guide to the ideas behind Outside In. With an article by Bill Thurston and an afterword by Albert Marden. Wellesley, MA: A K Peters (1995)

  32. Murphy, E.: Loose Legendrian Embeddings in High Dimensional Contact Manifold (2018)

  33. Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. 60, 383–396 (1954)

    Article  MathSciNet  Google Scholar 

  34. Smale, S.: A classification of immersions of the two-sphere. Trans. Amer. Math. Soc. 90, 281–290 (1958)

    Article  MathSciNet  Google Scholar 

  35. Spring, D.: Convex integration theory, Monographs in Mathematics, vol. 92. Birkhäuser Verlag, Basel (1998). Solutions to the \(h\)-principle in geometry and topology

  36. Wasem, M.: Convex integration, isometric extensions and approximations of curves. Ph.D. thesis, ETH-Zurich (2016)

Download references

Acknowledgements

The results presented here are a part of my PhD Thesis. I wish to express my gratitude towards the whole team of the Hevea project and specially to my advisors Vincent Borrelli and Boris Thibert for their help and support. I greatly thank Patrick Massot for his interest towards this work and many valuable comments that help me to improve the content of this text. I am grateful to the anonymous referee for their constructive and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélanie Theillière.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theillière, M. Convex integration theory without integration. Math. Z. 300, 2737–2770 (2022). https://doi.org/10.1007/s00209-021-02785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02785-9

Keywords

Mathematics Subject Classification

Navigation