Abstract
We study deformations of cluster algebras with several quantum parameters, called toroidal cluster algebras, which naturally appear in the study of Grothendieck rings of representations of quantum affine algebras. In this context, we construct toroidal Grothendieck rings and we establish these are flat deformations of Grothendieck rings. We prove that for a family of monoidal categories \({\mathscr {C}}_1\) of simply-laced quantum affine algebras categorifying finite-type cluster algebras, the toroidal Grothendieck ring has a natural structure of a toroidal cluster algebra.
This is a preview of subscription content, access via your institution.
Notes
Note that in the example of Sect. 2.2 the parameters are actually denoted by \( t_1\) and \( t_2\) respectively, following the notation introduced in that section.
Again, under a sign change. Here, with the purpose that the result is compatible with the quasi-commutation product between the variables \( Y_{i,p}^{\pm 1}\).
Note that in [30] the authors consider the same quantum torus up to a minus sign. Moreover, the quantum Cartan matrices coincides up to a swap of rows (resp. columns) 1 and 2, and its inverse \({\widetilde{C}}(z)\) is expanded for negative z.
References
Bittmann, L.: A quantum cluster algebra approach to representations of simply-laced quantum affine algebras. Math. Z (2020). arXiv:1911.13110
Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras III: Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)
Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)
Brito, M., Chari, V.: Tensor products and q-characters of HL-modules and monoidal categorifications. J. Éc. Polytech. Math. 6, 581–619 (2019)
Chari, V., Hernandez, D.: Beyond Kirillov-Reshetikhin modules. In: Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications. Contemp. Math. vol. 506, , pp. 49–81. Amer. Math. Soc., Providence, RI (2010)
Chari, V., Moura, A.A.: Characters and blocks for finite-dimensional representations of quantum affine algebras. Int. Math. Res. Not. 2005(5), 257–298 (2005)
Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)
Cautis, S., Williams, H.: Cluster theory of the coherent Satake category. J. Am. Math. Soc. 32, 709–778 (2019)
Davison, B.: Positivity for quantum cluster algebras. Ann. Math. (2) 187(1), 157–219 (2018)
Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)
Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63–121 (2003)
Frenkel, E., Reshetikhin, N.: Deformations of \(W\)-Algebras associated to simple Lie algebras. Commun. Math. Phys. 197(1), 1–32 (1998)
Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformations of \(W\)-algebras. In: Recent Developments in Quantum Affine Algebras and related topics (Raleigh, N.C.), 1998, Contemp. Math. vol. 248, pp. 163–205 (1999)
Fujita, R.: Affine highest weight categories and quantum affine Schur–Weyl duality of Dynkin quiver types (2020). arXiv:1710.11288
Fujita, R.: Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality. Int. Math. Res. Not. (22), 8353–8386 (2020)
Gautam, S., Laredo, V.T.: Meromorphic tensor equivalence for Yangians and quantum loop algebras. Publ. Math. Inst. Hautes Études Sci. 125, 267–337 (2017)
Geiss, C., Leclerc, B., Schroer, J.: Cluster structures on quantum coordinate rings. Sel. Math. 19(2), 337–397 (2013)
Geiss, C., Leclerc, B., Schroer, J.: Quantum cluster algebras and their specializations. J. Algebra 558, 411–422 (2020)
Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster Algebras and Poisson geometry, Mathematical Surveys and Monographs 167, 246 pp. American Mathematical Society, Providence, RI (2010)
Goodearl, K.R., Yakimov, M.T.: Quantum cluster algebra structures on quantum nilpotent algebras. Mem. Am. Math. Soc. 247(1169), vii+119 pp (2017)
Goodearl, K.R., Yakimov, M.T.: Cluster algebra structures on Poisson nilpotent algebras (2020). arXiv:1801.01963
Hernandez, D.: Algebraic approach to \(q, t\)-characters. Adv. Math. 187, 1–52 (2004)
Hernandez, D.: Monomials of \(q\) and \(q, t\)-characters for non simply-laced quantum affinizations. Math. Z. 250(2), 443–473 (2005)
Hernandez, D.: Avancées concernant les R-matrices et leurs applications (d’après Maulik-Okounkov, Kang-Kashiwara-Kim-Oh...). Sém. Bourbaki 1129 Astérisque 407, 297–331 (2019)
Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154(2), 265–341 (2010)
Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)
Hernandez, D., Leclerc, B.: Monoidal categorifications of cluster algebras of type A and D. In: Symmetries, integrable systems and representations, Springer Proc. Math. Stat., vol. 40, pp. 175–193 (2013)
Hernandez, D., Leclerc, B.: A cluster algebra approach to q-characters of Kirillov–Reshetikhin modules. J. Eur. Math. Soc. 18, 1113–1159 (2016)
Hernandez, D., Leclerc, B.: Quantum affine algebras and cluster algebras. In: Progress in Mathematics, Honor of V, Chari, vol. 337 (2021)
Hernandez, D., Oya, H.: Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan–Lusztig algorithm. Adv. Math. 347, 192–272 (2019)
Hu, N., Pei, Y.: Notes on two-parameter groups (I). Sci. China Ser. A 51(6), 1101–1110 (2008)
Hu, N., Pei, Y., Rosso, M.: Multi-parameter quantum groups and quantum shuffles. In: Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications. Contemp. Math., vol. 506, pp. 145–171 (2010)
Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-J.: Monoidal categorification of cluster algebras. J. Am. Math. Soc. 31(2), 349–426 (2018)
Kashiwara, M.: Crystal Bases and Categorifications, Proceedings of the ICM 2018, vol. I, pp. 249–258 (2018)
Kuniba, A., Nakanishi, T., Suzuki, J.: T-systems and Y-systems in integrable systems. J. Phys. A 44(10), 146 (2011)
Lee, K., Schiffler, R.: Positivity for cluster algebras. Ann. Math. (2) 182(1), 73–125 (2015)
Nakajima, H.: Quiver varieties and \(t\)-analogs of \(q\)-characters of quantum affine algebras. Ann. Math. (2) 160(3), 1057–1097 (2004)
Nakajima, H.: t-analogs of q-characters of Kirillov–Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003)
Nakajima, H.: Quiver varieties and cluster algebras. Kyoto J. Math. 51, 71–126 (2011)
Oh, S.-J., Suh, U.: Twisted and folded Auslander–Reiten quiver and applications to the representation theory of quantum affine algebras. J. Algebra 535, 53–132 (2019)
Okounkov, A.: On the Crossroads of Enumerative Geometry and Geometric Representation Theory. Proceedings of the ICM 2018, vol. I, pp. 839–867 (2018)
Qin, F.: Triangular bases in quantum cluster algebras and monoidal categorification conjectures. Duke Math. J. 166(12), 2337–2442 (2017)
Varagnolo, M., Vasserot, E.: Perverse sheaves and quantum Grothendieck rings. Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, pp. 345–365. Birkhäuser, Boston (2003)
Acknowledgements
The authors would like to thank the referee for his comments and remarks. The authors would like to thank also Martina Lanini, Bernard Leclerc and Bernhard Keller for discussions and references. The authors were supported by the European Research Council under the European Union’s Framework Programme H2020 with ERC Grant Agreement number 647353 Qaffine.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fedele, L., Hernandez, D. Toroidal Grothendieck rings and cluster algebras. Math. Z. 300, 377–420 (2022). https://doi.org/10.1007/s00209-021-02780-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-021-02780-0