Skip to main content
Log in

Equivariant basic cohomology under deformations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

By methods of Ghys and Haefliger–Salem it is possible to deform a Riemannian foliation on a simply connected compact manifold, or more generally a Killing foliation, into a closed foliation, i.e., a foliation whose leaves are all closed. Certain transverse geometric and topological properties are preserved under these deformations, as previously shown by the authors. For instance the Euler characteristic of basic cohomology is invariant, whereas its Betti numbers are not. In this article we show that the equivariant basic cohomology ring structure is invariant. This leads to a sufficient algebraic condition, namely equivariant formality, for the Betti numbers to be preserved as well. In particular, this is true for the deformation of the Reeb orbit foliation of a K-contact manifold. Another consequence is that there is a universal bound on the sum of basic Betti numbers of any equivariantly formal, positively curved Killing foliation of a given codimension. We also show that a Killing foliation with negative transverse Ricci curvature is closed. If the transverse sectional curvature is negative we show, furthermore, that its fundamental group has exponential growth. Finally, we obtain a transverse generalization of Synge’s theorem to Killing foliations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adem, A., Leida, J., Ruan., Y.: Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics, vol. 171. Cambridge University Press, Cambridge (2007)

  2. Allday C., Puppe, V.: Cohomological Methods in Transformation Groups. Cambridge Studies in Advanced Mathematics, vol. 32. Cambridge University Press, Cambridge (1993)

  3. Armstrong, M.: Calculating the fundamental group of an orbit space. Proc. Am. Math. Soc. 84(2), 267–271 (1982)

    Article  MathSciNet  Google Scholar 

  4. Bagaev, A., Zhukova, N.: The isometry groups of Riemannian orbifolds. Sib. Math. J. 48(4), 579–592 (2007)

    Article  MathSciNet  Google Scholar 

  5. Borzellino, J.: Orbifolds with lower Ricci curvature bounds. Proc. Am. Math. Soc. 125(10), 3011–3018 (1997)

    Article  MathSciNet  Google Scholar 

  6. Bridson, M., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der mathematischen Wissenschaften, vol. 319. Springer, New York (2013)

  7. Candel, A., Conlon, L.: Foliations I. Graduate Studies in Mathematics, vol. 23. American Mathematical Society, Providence, RI (2000)

  8. Caramello, F., Töben, D.: Positively curved Killing foliations via deformations. Trans. Am. Math. Soc. (2019). https://doi.org/10.1090/tran/7893

  9. Chen, W., Ruan, Y.: Orbifold Gromov–Witten theory. In: Adem, A., Morava, J., Ruan, Y. (eds.) Orbifolds in Mathematics and Physics. Contemporary Mathematics, vol. 310, pp. 25–85. American Mathematical Society, providence, RI (2002)

  10. Galaz-García, F., Kerin, M., Radeschi, M., Wiemeler, M.: Torus orbifolds, slice-maximal torus actions and rational ellipticity. Int. Math. Res. Not. IMRN (2017). https://doi.org/10.1093/imrn/rnx064

  11. Ghys, E.: Feuilletages riemanniens sur les varietes simplement connexes. Ann. Inst. Fourier (Grenoble) 34, 203–223 (1984)

    Article  MathSciNet  Google Scholar 

  12. Goertsches, O., Loiudice, E.: On the topology of metric \(f\)-\(K\)-contact manifolds. Monatsh. Math. 192, 355–370 (2020)

    Article  MathSciNet  Google Scholar 

  13. Goertsches, O., Nozawa, H., Töben, D.: Equivariant cohomology of \(K\)-contact manifolds. Math. Ann. (2012). https://doi.org/10.1007/s00208-011-0767-8

  14. Goertsches, O., Nozawa, H., Töben, D.: Localization of Chern–Simons type invariants of Riemannian foliations. Isr. J. Math. (2017). https://doi.org/10.1007/s11856-017-1608-6

  15. Goertsches, O., Töben, D.: Equivariant basic cohomology of riemannian foliations. J. Reine Angew. Math. (2018). https://doi.org/10.1515/crelle-2015-0102

  16. Gromov, M.: Curvature, diameter and Betti numbers. Comment. Math. Helv. 56, 179–195 (1981)

    Article  MathSciNet  Google Scholar 

  17. Gromov, M.: Volume and bounded cohomology. Publ. Math. Inst. Hautes Etudes Sci. 56, 5–99 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Guillemin, V., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory, with An Appendix Containing Two Reprints by Henri Cartan. Mathematics Past and Present. Springer, New York (1999)

    MATH  Google Scholar 

  19. Haefliger, A., Salem, E.: Riemannian foliations on simply connected manifolds and actions of tori on orbifolds. Ill. J. Math. 34, 706–730 (1990)

    MathSciNet  MATH  Google Scholar 

  20. Hebda, J.: Curvature and focal points in Riemannian foliations. Indiana Univ. Math. J. 35, 321–331 (1986)

    Article  MathSciNet  Google Scholar 

  21. Kleiner, B., Lott, J.: Geometrization of three-dimensional orbifolds via Ricci flow. Astérisque 365, 101–177 (2014)

    MathSciNet  Google Scholar 

  22. Koh, L.-K.: Betti numbers of Alexandrov spaces. Proc. Am. Math. Soc. 122(1), 247–252 (1994)

    Article  MathSciNet  Google Scholar 

  23. Lin, Y., Sjamaar, R.: A Thom isomorphism in foliated de Rham theory (2020). arXiv:2001.11848

  24. Löh, C.: Geometric Group Theory. Universitext. Springer, New York (2017)

    Book  Google Scholar 

  25. Lupercio, E., Uribe, B.: Gerbes over orbifolds and twisted \(K\)-theory. Commun. Math. Phys. 245(3), 449–489 (2004)

    Article  MathSciNet  Google Scholar 

  26. McCleary, J.: User’s Guide to Spectral Sequences. Cambridge Studies in Advanced Mathematics, vol. 58. Cambridge University Press, Cambridge (2001)

  27. Milnor, J.: A note on curvature and fundamental group. J. Differ. Geom. 2(1), 1–7 (1968)

    Article  MathSciNet  Google Scholar 

  28. Moerdijk, I., Mrčun, J.: Introduction to Foliations and Lie Groupoids. Cambridge Studies in Advanced Mathematics, vol. 91. Cambridge University Press, Cambridge (2003)

  29. Molino, P.: Desingularisation des feuilletages riemanniens. Am. J. Math. 106(5), 1091–1106 (1984)

    Article  Google Scholar 

  30. Molino, P.: Riemannian Foliations. With appendices by Y. Carrière, V. Sergiescu, G. Cairns, E. Salem and E. Ghys. Progress in Mathematics, vol. 73. Birkhäuser (1988)

  31. Nicolaescu, L.: On a theorem of Henri Cartan concerning the equivariant cohomology (2000). arXiv:math/0005068

  32. Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, 2nd edn., vol. 171. Springer, New York (2006)

  33. Samet, I.: Betti numbers of finite volume orbifolds. Geom. Topol. 17, 1113–1147 (2013)

    Article  MathSciNet  Google Scholar 

  34. Satake, I.: On a generalization of the notion of manifold. Proc. Natl. Acad. Sci. USA 42(6), 359–363 (1956)

    Article  MathSciNet  Google Scholar 

  35. Serre, J.-P.: Local Algebra. Springer Monographs in Mathematics. Springer, New York (2000)

  36. Töben, D.: Localization of basic characteristic classes. Ann. Inst. Fourier (Grenoble) 64(2), 537–570 (2014)

    Article  MathSciNet  Google Scholar 

  37. Yeroshkin, D.: Riemannian orbifolds with non-negative curvature. Doctoral Thesis, University of Pennsylvania (2014)

Download references

Acknowledgements

We are grateful to Professors Marcos M. Alexandrino, Oliver Goertsches and Hiraku Nozawa, for the insightful discussions, and to the anonymous referee for the valuable comments and suggestions. Francisco C. Caramello Jr. also thanks the Department of Mathematics of the University of São Paulo for the welcoming environment where a substantial part of this work was developed, and FAPESP for the research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco C. Caramello Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F.C. was supported by grant #2018/14980-0, São Paulo Research Foundation (FAPESP).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caramello, F.C., Töben, D. Equivariant basic cohomology under deformations. Math. Z. 299, 2461–2482 (2021). https://doi.org/10.1007/s00209-021-02768-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02768-w

Keywords

Mathematics Subject Classification

Navigation