Skip to main content
Log in

Enriched set-valued P-partitions and shifted stable Grothendieck polynomials

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce an enriched analogue of Lam and Pylyavskyy’s theory of set-valued P-partitions. An an application, we construct a K-theoretic version of Stembridge’s Hopf algebra of peak quasisymmetric functions. We show that the symmetric part of this algebra is generated by Ikeda and Naruse’s shifted stable Grothendieck polynomials. We give the first proof that the natural skew analogues of these power series are also symmetric. A central tool in our constructions is a “K-theoretic” Hopf algebra of labeled posets, which may be of independent interest. Our results also lead to some new explicit formulas for the involution \(\omega \) on the ring of symmetric functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A graded bialgebra \(H = \bigoplus _{n\ge 0} H_n\) is connected if the unit and counit maps restrict to inverse isomorphisms \(R \cong H_0\). This condition is not essential, but recurs in many examples and is often convenient to assume. Any graded connected bialgebra is automatically a Hopf algebra, and when defining such objects one just needs to specify the (co)product maps.

  2. For simplicity, we define \({\mathfrak {m}}\Pi \textsf {Sym}_{{\mathbb {Q}}[\beta ]}\) over the polynomial ring \({\mathbb {Q}}[\beta ]\) with rational coefficients, but in fact, it would be sufficient to work with coefficients in \({\mathbb {Z}}[2^{-1}]\) rather than \({\mathbb {Q}}\). As in Corollary 4.17, we will only ever need to divide by powers of the prime 2.

  3. Matsumura’s result concerns certain polynomials \(\mathfrak G_\sigma (x,\xi ) \in {\mathbb {Z}}[\beta ][x_1,x_2,\ldots ,\xi _1,\xi _2,\ldots ]\) indexed by permutations \(w \in S_\infty \). These are related to the power series \(G_w\) by the identity \(G_w = \lim _{m\rightarrow \infty } \mathfrak G_{1^m\times w}(x,0)\), where convergence is in the sense of formal power series.

References

  1. Aguiar, M., Ardila, F.: Hopf monoids and generalized permutahedra. Preprint (2017), arXiv:1709.07504

  2. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn-Sommerville relations. Compos. Math. 142, 1–30 (2006)

    Article  MathSciNet  Google Scholar 

  3. Ardila, F., Serrano, L.G.: Staircase skew Schur functions are Schur P-positive. J. Algebr. Combin. 36, 409–423 (2012)

    Article  MathSciNet  Google Scholar 

  4. Buch, A.S.: A Littlewood-Richardson rule for the K-theory of Grassmannians. Acta Math. 189, 37–78 (2002)

    Article  MathSciNet  Google Scholar 

  5. A. S. Buch and V. Ravikumar. Pieri rules for the K-theory of cominuscule Grassmannians. In: J. Reine Angew. Math. 668 (2012), pp. 109–132

    MathSciNet  MATH  Google Scholar 

  6. A. S. Buch and M. Samuel. K-theory of minuscule varieties. In: J. Reine Angew. Math. 719 (2016), pp. 133–171

    MathSciNet  MATH  Google Scholar 

  7. A. S. Buch et al. Stable Grothendieck polynomials and K-theoretic factor sequences. In: Math. Ann. 340 (2008), pp. 359–382

    Article  MathSciNet  Google Scholar 

  8. E. Clifford, H. Thomas, and A. Yong. K-theoretic Schubert calculus for OG(n, 2n + 1) and jeu de taquin for shifted increasing tableaux. In: J. Reine Angew. Math. 690 (2014), pp. 51–63

    MathSciNet  MATH  Google Scholar 

  9. DeWitt, E. A.: Identities relating Schur s-functions and Q-functions. PhD thesis. University of Michigan, (2012)

  10. Dieudonné, J.: Introduction to the theory of formal groups. Marcel Dekker, New York (1973)

    MATH  Google Scholar 

  11. S. Fomin and C. Greene. Noncommutative Schur functions and their applications. In: Discrete Math. 193 (1998), pp. 179–200

    Article  MathSciNet  Google Scholar 

  12. Fomin, S., Kirillov, A.N.: Combinatorial Bn-analogues of Schubert polynomials. Trans. Amer. Math. Soc. 348, 3591–3620 (1996)

    Article  Google Scholar 

  13. Fomin, S., Kirillov, A.N.: Grothendieck polynomials and the Yang–Baxter equation. In: Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics, DIMACS, pp. 184–190 (1994)

  14. Fomin, S., Kirillov, A.N.: The Yang-Baxter equation, symmetric functions, and Schubert polynomials. Discrete Math. 153, 123–143 (1996)

    Article  MathSciNet  Google Scholar 

  15. Grinberg, D., Reiner, V.: Hopf algebras in combinatorics. Preprint (2018). arXiv:1409.8356

  16. Z. Hamaker, E. Marberg, and B. Pawlowski. Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures. In: J. Combin. Theory Ser. A 160 (2018), pp. 217–260

    Article  MathSciNet  Google Scholar 

  17. Hamaker, Z., Marberg, E., Pawlowski, B.: Schur P-positivity and involution Stanley symmetric functions. In: IMRN (2017), p. rnx274

  18. Z. Hamaker et al. Shifted Hecke insertion and K-theory of OG(n, 2n+1). In: J. Combin. Theory Ser. A 151 (2017), pp. 207–240

    Article  MathSciNet  Google Scholar 

  19. T. Ikeda and H. Naruse. K-theoretic analogues of factorial Schur P- and Q-functions. In: Adv. Math. 243 (2013), pp. 22–66

    Article  MathSciNet  Google Scholar 

  20. Kirillov, A.N., Naruse, H.: Construction of Double Grothendieck Polynomials of Classical Types using IdCoxeter Algebras. Tokyo J. Math. 39(3), 695–728 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lam, T.K.: B and D analogues of stable Schubert polynomials and related insertion algorithms. PhD thesis. Massachusetts Institute of Technology (1995)

  22. Lam, T., Pylyavskyy, P.: Combinatorial Hopf algebras and K-homology of Grassmannians. In: IMRN (2007), p. rnm125

  23. Lascoux, A., Schützenberger, M.-P.: Polynômes de Schubert. In: Comptes rendus Acad. Paris 294, 447–450 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Luoto, K., Mykytiuk, S., vanWilligenburg, S.: An introduction to quasi-symmetric Schur functions. In: Ddd V (eds) Springer Briefs in Mathematics. Springer, New York, (2013)

    Google Scholar 

  25. I. G. Macdonald. Symmetric Functions and Hall Polynomials, 2nd ed. Oxford University Press, New York, 1995

    MATH  Google Scholar 

  26. Manivel, L.: Symmetric Functions, Schubert Polynomials, and Degeneracy Loci. American Mathematical Society (2001)

    MATH  Google Scholar 

  27. Marberg, E.: A symplectic refinement of shifted Hecke insertion. J. Combin. Theory Ser. A 173, 10521 (2020)

    Article  MathSciNet  Google Scholar 

  28. Marberg, E.: Linear compactness and combinatorial bialgebras. Preprint (2018). arXiv:1810.00148

  29. Marberg, E., Pawlowski, B.: On some properties of symplectic Grothendieck polynomials. J. Pure Appl. Algebra 225, 106 (2021)

    Article  MathSciNet  Google Scholar 

  30. E. Marberg and B. Pawlowski. Stanley symmetric functions for signed involutions. In: J. Combin. Theory Ser. A 168 (2019), pp. 288–317

    Article  MathSciNet  Google Scholar 

  31. Tomoo Matsumura. A tableau formula of double Grothendieck polynomials for 321-avoiding permutations. In: Ann. Comb. 24 (2020), pp. 55–67

    Article  MathSciNet  Google Scholar 

  32. Nakagawa, M., Naruse, H.: Generating functions for the universal Hall–Littlewood P- and Q-functions. Preprint (2017). arXiv:1705.04791

  33. Nakagawa, M., Naruse, H.: Universal factorial Schur P,Q-functions and their duals. Preprint (2018). arXiv:1812.03328

  34. Naruse, H.: Elementary proof and application of the generating function for generalized Hall-Littlewood functions. J. Algebra 516, 197–209 (2018)

    Article  MathSciNet  Google Scholar 

  35. Patrias, R.: Antipode formulas for some combinatorial Hopf algebras. Electron. J. Combin. 23(4), 430 (2016)

    Article  MathSciNet  Google Scholar 

  36. Pechenik, O., Searles, D.: Decompositions of Grothendieck polynomials. In: IMRN, pp. 3214–3241 (2019)

  37. Petersen, T.K.: Enriched P-partitions and peak algebras. Adv. Math. 209, 561–610 (2007)

    Article  MathSciNet  Google Scholar 

  38. L. G. Serrano. The shifted plactic monoid. In: Mathematische Zeitschrift 266.2 (2010), pp. 363–392

    Article  MathSciNet  Google Scholar 

  39. Stanley, R.P.: Ordered structures and partitions. Mem. Amer. Math. Soc. 119 (1972)

  40. Stembridge, J.R.: Enriched P-partitions. Trans. Amer. Math. Soc. 349(2), 763–788 (1997)

    Article  MathSciNet  Google Scholar 

  41. Yeliussizov, D.: Duality and deformations of stable Grothendieck polynomials. J. Algebr. Comb. 45, 295–344 (2017)

    Article  MathSciNet  Google Scholar 

  42. D. Yeliussizov. Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs. In: J. Combin. Theory Ser. A 161 (2019), pp. 453–485

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by an ORAU Powe award. The second author was partially supported by Hong Kong RGC Grant ECS 26305218. We are grateful to Zach Hamaker, Hiroshi Naruse, Brendan Pawlowski, and Alex Yong for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Marberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, J.B., Marberg, E. Enriched set-valued P-partitions and shifted stable Grothendieck polynomials. Math. Z. 299, 1929–1972 (2021). https://doi.org/10.1007/s00209-021-02751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02751-5

Navigation