Skip to main content
Log in

On uniformly disconnected Julia sets

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

It is well-known that the Julia set of a hyperbolic rational map is quasisymmetrically equivalent to the standard Cantor set. Using the uniformization theorem of David and Semmes, this result comes down to the fact that such a Julia set is both uniformly perfect and uniformly disconnected. We study the analogous question for Julia sets of UQR maps in \(\mathbb {S}^n\), for \(n\ge 2\). Introducing hyperbolic UQR maps, we show that the Julia set of such a map is uniformly disconnected if it is totally disconnected. Moreover, we show that if E is a compact, uniformly perfect and uniformly disconnected set in \(\mathbb {S}^n\), then it is the Julia set of a hyperbolic UQR map \(f:\mathbb {S}^N \rightarrow \mathbb {S}^N\) where \(N=n\) if \(n=2\) and \(N=n+1\) otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors Lars, V.: Extension of quasiconformal mappings from two to three dimensions. Proc. Natl. Acad. Sci. USA 51, 768–771 (1964)

    Article  MathSciNet  Google Scholar 

  2. Antoine, L.: Sur l’homéomorphie de deux figures et de leurs voisinages, NUMDAM, [place of publication not identified] (1921)

  3. Bergweiler, W.: Iteration of quasiregular mappings. Comput. Methods. Funct. Theorem. 10, 455–481 (2010)

    Article  MathSciNet  Google Scholar 

  4. Matias Carrasco Piaggio: Conformal gauge of compact metric spaces. Université de Provence - Aix-Marseille I, Theses (2011)

    MATH  Google Scholar 

  5. Daverman, R.J.: Decompositions of manifolds. AMS Chelsea Publishing, Providence, RI, Reprint of the 1986 Original (2007)

  6. David, G., Semmes, S.: Fractured fractals and broken dreams. Oxford Lecture Series in Mathematics and its Applications, vol. 7, The Clarendon Press, Oxford University Press, New York, Self-similar geometry through metric and measure (1997)

  7. Alastair, N.F.: Attractor sets and julia sets in low dimensions. Conf. Geom. Dyn. 23, 117–129 (2019)

    Article  MathSciNet  Google Scholar 

  8. Fletcher, A.N., Nicks, D.A.: Julia sets of uniformly quasiregular mappings are uniformly perfect. Math. Proc. Camb. Philos. Soc. 151(3), 541–550 (2011)

    Article  MathSciNet  Google Scholar 

  9. Fletcher, A.N., Stoertz, D.: Julia sets and genus \(g\) cantor sets, in preparation

  10. Alastair, N.F., Jang-Mei, W.: Julia sets and wild Cantor sets. Geom. Ded. 174(1), 169–176 (2015)

    Article  MathSciNet  Google Scholar 

  11. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)

    Book  Google Scholar 

  12. Hinkkanen, A., Gaven, J.M.: Local dynamics of uniformly quasiregular mappings. Math. Scand. 95, 80–100 (2004)

    Article  MathSciNet  Google Scholar 

  13. Haissinsky, P., Pilgrim, K.M.: Quasisymmetrically inequivalent hyperbolic Julia sets. Rev. Mat. Ibero. 28(4), 1025–1034 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5):713–747 (1981)

  15. Iwaniec, T., Martin, G.: Quasiregular semigroups. Ann. Acad. Sci. Fenn. Math. 21(2), 241–254 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. The Clarendon Press, Oxford University Press, Oxford Mathematical Monographs (2001)

    MATH  Google Scholar 

  17. Luukkainen, J.: Assouad dimension : antifractal metrization, porous sets, and homogeneous measures. J. Kor. Math. Soc. 35(1), 23–76 (1998)

    MathSciNet  MATH  Google Scholar 

  18. MacManus, P.: Catching sets with quasicircles. Rev. Mat. Iberoamericana 15(2), 267–277 (1999)

    Article  MathSciNet  Google Scholar 

  19. Gaven, J.M.: Branch sets of uniformly quasiregular maps. Conf. Geom. Dyn. 1, 24–27 (1997)

    Article  MathSciNet  Google Scholar 

  20. Martin, G.J.: Quasiregular mappings, curvature & dynamics. In: Proceedings of the International Congress of Mathematicians, Volume III, Hindustan Book Agency, New Delhi, pp. 1433–1449 (2010)

  21. Mayer, V.: Uniformly quasiregular mappings of Lattès type. Conf. Geom. Dyn. 1, 104–111 (1997)

    Article  Google Scholar 

  22. Mañé, R., Da Rocha, L.F.: Julia sets are uniformly perfect. Proc. Am. Math. Soc. 116(1), 251–257 (1992)

    Article  MathSciNet  Google Scholar 

  23. Gaven, J.M., Peltonen, K.: Stoïlow factorization for quasiregular mappings in all dimensions. Proc. Am. Math. Soc. 138(1), 147–151 (2010)

    Article  Google Scholar 

  24. Munkres, J.: Obstructions to the smoothing of piecewise-differentiable homeomorphisms. Ann. Math. (2) 72, 521–554 (1960)

  25. Rickman, S.: Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26. Springer, Berlin (1993)

    Google Scholar 

  26. Semmes, S.: On the nonexistence of bi-Lipschitz parameterizations and geometric problems about \(A_\infty \)-weights. Rev. Mat. Iberoamericana 12(2), 337–410 (1996)

    Article  MathSciNet  Google Scholar 

  27. Tukia, P., Väisälä, J.:Lipschitz and quasiconformal approximation and extension. Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 2, 303–342 (1982)

  28. Tyson, J.: Quasiconformality and quasisymmetry in metric measure spaces. Ann. Acad. Sci. Fenn. Math. 23(2), 525–548 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Väisälä, J.: Lectures on \(n\)-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol. 229. Springer, Berlin (1971)

  30. Vellis, V.:Uniformization of cantor sets with bounded geometry. arXiv:1609.08763 (2016)

  31. Yang, F.: Cantor Julia sets of Hausdorff dimension two, to appear in IMRN

Download references

Acknowledgements

We would like to thank Peter Haissinsky for helpful comments on the uniform disconnectedness of hyperbolic rational maps. We also thank the anonymous referee for their comments that improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair N. Fletcher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Alastair N. Fletcher was supported by a grant from the Simons Foundation (#352034, Alastair Fletcher). Vyron Vellis was partially supported by NSF DMS grant 1952510.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, A.N., Vellis, V. On uniformly disconnected Julia sets. Math. Z. 299, 853–866 (2021). https://doi.org/10.1007/s00209-021-02699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02699-6

Keywords

Mathematics Subject Classification

Navigation