Skip to main content
Log in

Poincaré-Sobolev inequalities with rearrangement-invariant norms on the entire space

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Poincaré-Sobolev-type inequalities involving rearrangement-invariant norms on the entire \(\mathbb R^n\) are provided. Namely, inequalities of the type \(\Vert u-P\Vert _{Y(\mathbb R^n)}\le C\Vert \nabla ^m u\Vert _{X(\mathbb R^n)}\), where X and Y are either rearrangement-invariant spaces over \(\mathbb R^n\) or Orlicz spaces over \(\mathbb R^n\), u is a \(m-\)times weakly differentiable function whose gradient is in X, P is a polynomial of order at most \(m-1\), depending on u, and C is a constant independent of u, are studied. In a sense optimal rearrangement-invariant spaces or Orlicz spaces Y in these inequalities when the space X is fixed are found. A variety of particular examples for customary function spaces are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: Sharp Sobolev type embeddings on the entire Euclidean space. Commun. Pure Appl. Anal. 17(5), 2011–2037 (2018). https://doi.org/10.3934/cpaa.2018096. ISSN 1534-0392

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Figueiredo, G.M., Santos, J.A.: Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications. Topol. Methods Nonlinear Anal. 44(2), 435–456 (2014). https://doi.org/10.12775/TMNA.2014.055. ISSN 1230-3429

    Article  MathSciNet  MATH  Google Scholar 

  3. Amick, C.J.: Some remarks on Rellich’s theorem and the Poincaré inequality. J. Lond. Math. Soc. (2) 18(1), 81–93 (1978). https://doi.org/10.1112/jlms/s2-18.1.81. ISSN 0024-6107

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett, C., Sharpley, R.: Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, (1988). ISBN 0-12-088730-4

  5. Bhattacharya, T., Leonetti, F.: A new Poincaré inequality and its application to the regularity of minimizers of integral functionals with nonstandard growth. Nonlinear Anal. 17(9), 833–839 (1991). https://doi.org/10.1016/0362-546X(91)90157-V. ISSN 0362-546X

    Article  MathSciNet  MATH  Google Scholar 

  6. Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Part. Differ. Equ. 5(7), 773–789 (1980). https://doi.org/10.1080/03605308008820154. ISSN 0360-5302

    Article  MathSciNet  MATH  Google Scholar 

  7. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988). ISSN 0075-4102

    MathSciNet  MATH  Google Scholar 

  8. Brudnyĭ, J.A.: Rational approximation and imbedding theorems. Dokl. Akad. Nauk SSSR 247(2), 269–272 (1979). ISSN 0002-3264

    MathSciNet  Google Scholar 

  9. Cavaliere, P., Cianchi, A.: Classical and approximate Taylor expansions of weakly differentiable functions. Ann. Acad. Sci. Fenn. Math. 39(2), 527–544 (2014). https://doi.org/10.5186/aasfm.2014.3933. ISSN 1239-629X

    Article  MathSciNet  MATH  Google Scholar 

  10. Chanillo, S., Wheeden, R.L.: Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions. Am. J. Math. 107(5), 1191–1226 (1985). https://doi.org/10.2307/2374351. ISSN 0002-9327

    Article  MATH  Google Scholar 

  11. Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45(1), 39–65 (1996). https://doi.org/10.1512/iumj.1996.45.1958. ISSN 0022-2518

    Article  MathSciNet  MATH  Google Scholar 

  12. Cianchi, A.: Optimal Orlicz-Sobolev embeddings. Rev. Mat. Iberoamericana 20(2), 427–474 (2004). https://doi.org/10.4171/RMI/396. ISSN 0213-2230

    Article  MathSciNet  MATH  Google Scholar 

  13. Cianchi, A., Pick, L.: Sobolev embeddings into BMO, VMO, and \(L_\infty \). Ark. Mat. 36(2), 317–340 (1998). https://doi.org/10.1007/BF02384772. ISSN 0004-2080

    Article  MathSciNet  MATH  Google Scholar 

  14. Cianchi, A., Pick, L.: Optimal Gaussian Sobolev embeddings. J. Funct. Anal. 256(11), 3588–3642 (2009). https://doi.org/10.1016/j.jfa.2009.03.001. ISSN 0022-1236

    Article  MathSciNet  MATH  Google Scholar 

  15. Cianchi, A., Edmunds, D.E., Gurka, P.: On weighted Poincaré inequalities. Math. Nachr. 180, 15–41 (1996). https://doi.org/10.1002/mana.3211800103. ISSN 0025-584X

    Article  MathSciNet  MATH  Google Scholar 

  16. Cianchi, A., Pick, L., Slavíková, L.: Higher-order Sobolev embeddings and isoperimetric inequalities. Adv. Math. 273, 568–650 (2015). https://doi.org/10.1016/j.aim.2014.12.027. ISSN 0001-8708

    Article  MathSciNet  MATH  Google Scholar 

  17. Cwikel, M., Pustylnik, E.: Weak type interpolation near “endpoint” spaces. J. Funct. Anal. 171(2), 235–277 (2000). https://doi.org/10.1006/jfan.1999.3502. ISSN 0022-1236

    Article  MathSciNet  MATH  Google Scholar 

  18. Donaldson, T.: Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J. Differ. Equ. 10, 507–528 (1971). https://doi.org/10.1016/0022-0396(71)90009-X. ISSN 0022-0396

    Article  MathSciNet  MATH  Google Scholar 

  19. Edmunds, D.E., Mihula, Z., Musil, V., Pick, L.: Boundedness of classical operators on rearrangement-invariant spaces. J. Funct. Anal. 278(4), 108341 (2020). https://doi.org/10.1016/j.jfa.2019.108341. ISSN 0022-1236

    Article  MathSciNet  MATH  Google Scholar 

  20. Esposito, L., Ferone, V., Kawohl, B., Nitsch, C., Trombetti, C.: The longest shortest fence and sharp Poincaré-Sobolev inequalities. Arch. Ration. Mech. Anal. 206(3), 821–851 (2012). https://doi.org/10.1007/s00205-012-0545-0. ISSN 0003-9527

    Article  MathSciNet  MATH  Google Scholar 

  21. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x+101 (2000). https://doi.org/10.1090/memo/0688. ISSN 0065-9266

    Article  MATH  Google Scholar 

  22. Hansson, K.: Imbedding theorems of Sobolev type in potential theory. Math. Scand. 45(1), 77–102 (1979). https://doi.org/10.7146/math.scand.a-11827. ISSN 0025-5521

    Article  MathSciNet  MATH  Google Scholar 

  23. Ho, K.-P.: Fourier integrals and Sobolev imbedding on rearrangement invariant quasi-Banach function spaces. Ann. Acad. Sci. Fenn. Math. 41(2), 897–922 (2016). https://doi.org/10.5186/aasfm.2016.4157. ISSN 1239-629X

    Article  MathSciNet  MATH  Google Scholar 

  24. Hurri-Syrjänen, R.: Unbounded Poincaré domains. Ann. Acad. Sci. Fenn. Ser. A I Math 17(2), 409–423 (1992). https://doi.org/10.5186/aasfm.1992.1725. ISSN 0066-1953

    Article  MathSciNet  MATH  Google Scholar 

  25. Jaye, B.J., Maz’ya, V.G., Verbitsky, I.E.: Quasilinear elliptic equations and weighted Sobolev-Poincaré inequalities with distributional weights. Adv. Math. 232, 513–542 (2013). https://doi.org/10.1016/j.aim.2012.09.029. ISSN 0001-8708

    Article  MathSciNet  MATH  Google Scholar 

  26. Kerman, R., Pick, L.: Optimal Sobolev imbeddings. Forum Math. 18(4), 535–570 (2006). https://doi.org/10.1515/FORUM.2006.028. ISSN 0933-7741

    Article  MathSciNet  MATH  Google Scholar 

  27. Kolyada, V.I.: Rearrangements of functions, and embedding theorems. Uspekhi Mat. Nauk 44((5(269))), 61–95 (1989). https://doi.org/10.1070/RM1989v044n05ABEH002287. ISSN 0042-1316

    Article  MathSciNet  Google Scholar 

  28. Krasnosel’skiĭ, M.A., Rutickiĭ, Ja.B.: Convex functions and Orlicz spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, (1961)

  29. Malý, J., Ziemer, W.P.: Fine regularity of solutions of elliptic partial differential equations, volume 51 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, (1997). ISBN 0-8218-0335-2. 10.1090/surv/051

  30. Maz’ya, V.G.: Sobolev spaces with applications to elliptic partial differential equations, volume 342 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, augmented edition, (2011). ISBN 978-3-642-15563-5. https://doi.org/10.1007/978-3-642-15564-2

  31. Z. Mihula. Embeddings of homogeneous Sobolev spaces on the entire space. Proc. Roy. Soc. Edinburgh Sect. A, First view:1–33, 2020. ISSN 0308-(2105). https://doi.org/10.1017/prm.2020.14

  32. Musil, V.: Classical operators of harmonic analysis in Orlicz spaces. PhD thesis, Charles University, Faculty of Mathematics and Physics, (2018). https://is.cuni.cz/webapps/zzp/detail/150069/

  33. Musil, V.: Fractional maximal operator in Orlicz spaces. J. Math. Anal. Appl., 474(1):94–115, (2019). ISSN 0022-247X. https://doi.org/10.1016/j.jmaa.2019.01.034

  34. O’Neil, R.: Convolution operators and \(L(p,\,q)\) spaces. Duke Math. J., 30:129–142, (1963). ISSN 0012-7094. 10.1215/S0012-7094-63-03015-1. http://projecteuclid.org/euclid.dmj/1077374532

  35. Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces. Math. Inequal. Appl. 2(3), 391–467 (1999). https://doi.org/10.7153/mia-02-35. ISSN 1331-4343

    Article  MathSciNet  MATH  Google Scholar 

  36. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960). https://doi.org/10.1007/BF00252910. ISSN 0003-9527

    Article  MATH  Google Scholar 

  37. Peetre, J.: Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier (Grenoble), 16(1):279–317, (1966). ISSN 0373-0956. URL http://www.numdam.org/item?id=AIF_1966__16_1_279_0

  38. Rabier, P.J.: Uniformly local spaces and refinements of the classical Sobolev embedding theorems. Ark. Mat. 56(2), 409–440 (2018). https://doi.org/10.4310/ARKIV.2018.v56.n2.a13. ISSN 0004-2080

    Article  MathSciNet  MATH  Google Scholar 

  39. Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces, volume 146 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, (1991). ISBN 0-8247-8478-2

  40. Stein, E.M.: Editor’s note: the differentiability of functions in \({\bf R}^{n}\). Ann. of Math. (2), 113(2):383–385, 1981. ISSN 0003-486X. URL http://www.jstor.org/stable/2006989

  41. Talenti, G.: Inequalities in rearrangement invariant function spaces. In Nonlinear analysis, function spaces and applications, Vol. 5 (Prague, 1994), pages 177–230. Prometheus, Prague, (1994)

  42. Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(3), 479–500 (1998). ISSN 0392-4041

    MathSciNet  MATH  Google Scholar 

  43. Vuillermot, P.-A.: A class of Orlicz-Sobolev spaces with applications to variational problems involving nonlinear Hill’s equations. J. Math. Anal. Appl. 89(1), 327–349 (1982). https://doi.org/10.1016/0022-247X(82)90105-6. ISSN 0022-247X

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Q.S.: Sobolev inequalities, heat kernels under Ricci flow, and the Poincaré conjecture. CRC Press, Boca Raton (2011). ISBN 978-1-4398-3459-6

    MATH  Google Scholar 

  45. Ziemer, W.P.: Weakly differentiable functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, (1989). ISBN 0-387-97017-7. https://doi.org/10.1007/978-1-4612-1015-3. Sobolev spaces and functions of bounded variation

  46. Zygmund, A.: Trigonometric series, vol. I, 2nd edn. II. Cambridge University Press, New York (1959)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Mihula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the grant P201-18-00580S of the Grant Agency of the Czech Republic, by the grant SVV-2017-260455, and by Charles University Research program No. UNCE/SCI/023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihula, Z. Poincaré-Sobolev inequalities with rearrangement-invariant norms on the entire space. Math. Z. 298, 1623–1640 (2021). https://doi.org/10.1007/s00209-020-02652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02652-z

Keywords

Mathematics Subject Classification

Navigation