Skip to main content
Log in

Almost sure Assouad-like dimensions of complementary sets

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given a non-negative, decreasing sequence a with sum 1, we consider all the closed subsets of [0, 1] such that the lengths of their complementary open intervals are given by the terms of a. These are the so-called complementary sets, or rearrangements of the Cantor set, constructed from a . In this paper we determine the almost sure value of the \(\varPhi \)-dimension of these sets given a natural model of randomness. The \(\varPhi \)-dimensions are intermediate Assouad-like dimensions which include the Assouad and quasi-Assouad dimensions as special cases. The answers depend on the size of \(\varPhi ,\) with one size behaving almost surely like the Assouad dimensions of the associated Cantor set and the other, like the quasi-Assouad dimensions. These results are new even for the Assouad dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Cantor set associated with \(a=\{a_{j}\}\) is the set formed by first removing from [0, 1] an open interval of length \(a_{1}\) (whose position is uniquely determined by the construction), leaving two closed subintervals \(A_0\) (to the left) and \(A_1\) (to the right). Next, remove open intervals of lengths \(a_{2}\) and \(a_{3}\) from \(A_0\) and \(A_1\) respectively, leaving two closed subintervals in each of \(A_0\) and \(A_1\). Repeat this process in the usual Cantor construction fashion.

References

  1. Assouad, P.: U.E.R. Mathématique, Université Paris XI, Orsay. Thèse de doctorat d’État. Publications Mathé matiques d’Orsay, No. 223–7769 (1977)

  2. Assouad, P.: Étude d’une dimension métrique liée à la possibilité de plongements dans \({ {R}}^{n}\). C. R. Acad. Sci. Paris Sér. A-B 288(15), A731–A734 (1979)

    MathSciNet  MATH  Google Scholar 

  3. Besicovitch, A.S., Taylor, S.J.: On the complementary intervals of a linear closed set of zero Lebesgue measure. J. Lond. Math. Soc. 29, 449–459 (1954)

    Article  MathSciNet  Google Scholar 

  4. Bishop, C., Peres, Y.: Fractals in Probability and Analysis. Cambridge studies in Advanced Math, vol. 162. Cambridge Univ. Press, Cambridge (2017)

  5. Bollobas, B.: Random Graphs. Academic, London (1985)

    MATH  Google Scholar 

  6. Chen, H., Du, Y., Wei, C.: Quasi-lower dimension and quasi-Lipschitz mapping. Fractals 25(3), 1–9 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chen, H., Wu, M., Chang, Y.: Lower Assouad type dimensions of uniformly perfect sets in doubling metric space. Fractals (2018). https://doi.org/10.1142/S0218348X20500395

    Article  MATH  Google Scholar 

  8. Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  9. Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997)

    MATH  Google Scholar 

  10. Fraser, J.M.: Assouad Dimension and Fractal Geometry. Tracts in Mathematics Series, vol. 222. Cambridge Univ. Press, Cambridge (2020)

  11. Fraser, J.M.: Assouad type dimensions and homogeneity of fractals. Trans. Am. Math. Soc. 366(12), 6687–6733 (2014)

    Article  MathSciNet  Google Scholar 

  12. Fraser, J.M., Hare, K.G., Hare, K.E., Troscheit, S., Yu, H.: The Assouad spectrum and the quasi-Assouad dimension: a tale of two spectra. Ann. Acad. Sci. Fenn. Math. 44, 379–387 (2019)

    Article  MathSciNet  Google Scholar 

  13. Fraser, J.M., Miao, J., Troscheit, S.: Assouad-dimension of randomly generated fractals. Ergod. Theory Dyn. Syst. 38, 982–1011 (2018)

    Article  MathSciNet  Google Scholar 

  14. Fraser, J.M., Troscheit, S.: Assouad-spectrum of random self affine carpets (2018). arXiv:1805.04643

  15. Fraser, J.M., Yu, H.: New dimension spectra: finer information on scaling and homogeneity. Adv. Math. 329, 273–328 (2018)

    Article  MathSciNet  Google Scholar 

  16. García, I., Hare, K.E.: Properties of Quasi-Assouad dimension. Ann. Acad. Sci. Fenn. Math. (2019).arXiv:1703.02526v3

  17. García, I., Hare, K.E., Mendivil, F.: Assouad dimensions of complementary sets. Proc. R. Soc. Edinb. Sect. A 148(3), 57–540 (2018)

    Article  MathSciNet  Google Scholar 

  18. García, I., Hare, K.E., Mendivil, F.: Intermediate Assouad-like dimensions. J. Fractal Geom. (2019). arXiv:1903.07155

  19. Hare, K.E., Mendivil, F., Zuberman, L.: The sizes of rearrangements of Cantor sets. Can. Math. Bull. 56(2), 354–365 (2013)

    Article  MathSciNet  Google Scholar 

  20. Hare, K.E., Troscheit, S.: Lower Assouad dimension of measures and regularity. Math. Proc. Camb. Philos. Soc. (2018). https://doi.org/10.1017/S0305004119000458

    Article  Google Scholar 

  21. Hawkes, J.: Random re-orderings of intervals complementary to a linear set. Q. J. Math. Oxf. Ser. 35, 165–172 (1984)

    Article  MathSciNet  Google Scholar 

  22. Howroyd, D., Yu, H.: Assouad dimension of random process. Proc. Edinb. Math. Soc. 62, 281–290 (2019)

    Article  MathSciNet  Google Scholar 

  23. Hu, X.: The exact Hausdorff measure for a random re-ordering of the Cantor set. Sci. China Ser. A 38(3), 273–286 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Hu, X.: The exact packing measure for a random re-ordering of the Cantor set. Sci. China Ser. A 39(1), 1–6 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Käenmäki, A., Lehrbäck, J., Vuorinen, M.: Dimensions. Whitney covers, and tubular neighborhoods. Indiana Univ. Math. J. 62, 1861–1889 (2013)

    Article  MathSciNet  Google Scholar 

  26. Käenmäki, A., Rossi, E.: Weak separation condition, Assouad dimension, and Furstenberg homogeneity. Ann. Acad. Sci. Fenn. Math. 41, 465–490 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kolchin, V., Sevast’yanov, B., Chistyakov, V.: Random Allocations. H. Winston & Sons, New York (1978)

    MATH  Google Scholar 

  28. Larman, D.G.: A new theory of dimension. Proc. Lond. Math. Soc. 3(1), 178–192 (1967)

    Article  MathSciNet  Google Scholar 

  29. Lü, F., Xi, L.: Quasi-Assouad dimension of fractals. J. Fractal Geom. 3(2), 187–215 (2016)

    Article  MathSciNet  Google Scholar 

  30. Luukkainen, J.: Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. Korean Math Soc. 35(1), 23–76 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Mackay, J., Tyson, J.: Conformal Dimension. Univ. Lecture Series, vol. 54. American Math. Soc., Providence (2010)

  32. Raab, M., Steger, A.: “Balls into Bins”—a simple and tight analysis. In: Randomization and Approximation Techniques in Computer Science (Barcelona 1998). Lecture Notes in Comp. Sci., vol. 1518, pp. 159–170. Springer, Berlin (1998)

  33. Troscheit, S.: Quasi-Assouad dimension for stochastically self-similar sets. Proc. R. Soc. Edinb. Sect. A 150(1), 261–275 (2020)

    Article  MathSciNet  Google Scholar 

  34. Troscheit, S.: Assouad spectrum thresholds for some random constructions. Can. Math. Bull. 63(2), 434–453 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of K. Hare is partially supported by NSERC Discovery grant 2016:03719. The research of F. Mendivil is partially supported by NSERC Discovery grant 2019:05237. I. García and K. Hare thank Acadia University for their hospitality when some of this research was done. I. García thanks the hospitality of University of Waterloo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, I., Hare, K. & Mendivil, F. Almost sure Assouad-like dimensions of complementary sets. Math. Z. 298, 1201–1220 (2021). https://doi.org/10.1007/s00209-020-02643-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02643-0

Keywords

Mathematics Subject Classification

Navigation