Skip to main content
Log in

Rigid local systems and finite general linear groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We use hypergeometric sheaves on \({{\mathbb {G}}}_m/{{\mathbb {F}}}_q\), which are particular sorts of rigid local systems, to construct explicit local systems whose arithmetic and geometric monodromy groups are the finite general linear groups \(\mathrm {GL}_n(q)\) for any \(n \ge 2\) and any prime power q, so long as \(q > 3\) when \(n=2\). This paper continues a program of finding simple (in the sense of simple to remember) families of exponential sums whose monodromy groups are certain finite groups of Lie type, cf. Gross (Adv Math 224:2531–2543, 2010), Katz (Mathematika 64:785–846, 2018) and Katz and Tiep (Finite Fields Appl 59:134–174, 2019; Adv Math 358:106859, 2019; Proc Lond Math Soc, 2020) for (certain) finite symplectic and unitary groups, or certain sporadic groups, cf. Katz and Rojas-León (Finite Fields Appl 57:276–286, 2019) and Katz et al. (J Number Theory 206:1–23, 2020; Int J Number Theory 16:341–360, 2020; Trans Am Math Soc 373:2007–2044, 2020). The novelty of this paper is obtaining \(\mathrm {GL}_n(q)\) in this hypergeometric way. A pullback construction then yields local systems on \({{\mathbb {A}}}^1/{{\mathbb {F}}}_q\) whose geometric monodromy groups are \(\mathrm {SL}_n(q)\). These turn out to recover a construction of Abhyankar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that for an integer \(a \ne 0,\pm 1\), and positive integers nm with \(\gcd (n,m)=1\), one has \(\gcd (a^n-1,a^m-1)=a-1\), as one sees by working in the multiplicative group of \({{\mathbb {Z}}}/d{{\mathbb {Z}}}\) for any d dividing \(\gcd (a^n-1,a^m-1)\).

References

  1. Abhyankar, S.: Nice equations for nice groups. Isr. J. Math. 88, 1–23 (1994)

    Article  MathSciNet  Google Scholar 

  2. Bateman, P.T., Horn, R.A.: A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comput. 16, 363–367 (1962)

    Article  MathSciNet  Google Scholar 

  3. Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. Lond. Math. Soc. 13, 1–22 (1981)

    Article  MathSciNet  Google Scholar 

  4. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. With Computational Assistance from J. G. Thackray. Oxford University Press, Eynsham (1985)

  5. Dornhoff, L.: Group Representation Theory. Dekker, New York (1971)

    MATH  Google Scholar 

  6. Gérardin, P.: Weil representations associated to finite fields. J. Algebra 46, 54–101 (1977)

    Article  MathSciNet  Google Scholar 

  7. Gross, B.H.: Rigid local systems on \({\mathbb{G}}_m\) with finite monodromy. Adv. Math. 224, 2531–2543 (2010)

    Article  MathSciNet  Google Scholar 

  8. Guest, S., Morris, J., Praeger, C.E., Spiga, P.: On the maximum orders of elements of finite almost simple groups and primitive permutation groups. Trans. Am. Math. Soc. 367, 7665–7694 (2015)

    Article  MathSciNet  Google Scholar 

  9. Guralnick, R.M., Tiep, P.H.: The non-coprime \(k(GV)\)-problem. J. Algebra 293, 185–242 (2005)

    Article  MathSciNet  Google Scholar 

  10. Isaacs, I.M.: Character Theory of Finite Groups. AMS-Chelsea, Providence (2006)

    MATH  Google Scholar 

  11. Katz, N.: Local-to-global extensions of representations of fundamental groups. Ann. Inst. Fourier (Grenoble) 36, 69–106 (1986)

    Article  MathSciNet  Google Scholar 

  12. Katz, N.: Gauss Sums, Kloosterman Sums, and Monodromy Groups. Annals of Mathematics Studies, vol. 116. Princeton University Press, Princeton (1988)

  13. Katz, N.: Exponential Sums and Differential Equations. Annals of Mathematics Studies, vol. 124. Princeton University Press, Princeton (1990)

  14. Katz, N.: From Clausen to Carlitz: low-dimensional spin groups and identities among character sums. Mosc. Math. J. 9, 57–89 (2009)

    Article  MathSciNet  Google Scholar 

  15. Katz, N., Rojas-León, A.: A rigid local system with monodromy group \(2.J_2\). Finite Fields Appl. 57, 276–286 (2019)

    Article  MathSciNet  Google Scholar 

  16. Katz, N., Rojas-León, A., Tiep, P.H.: Rigid local systems with monodromy group the Conway group \({{{{\rm Co}}}}_3\). J. Number Theory 206, 1–23 (2020)

    Article  MathSciNet  Google Scholar 

  17. Katz, N., Rojas-León, A., Tiep, P.H.: Rigid local systems with monodromy group the Conway group \({{{{\rm Co}}}}_2\). Int. J. Number Theory 16, 341–360 (2020)

    Article  MathSciNet  Google Scholar 

  18. Katz, N., Rojas-León, A., Tiep, P.H.: A rigid local system with monodromy group the big Conway group \({{\rm Co}}_1\) and two others with monodromy group the Suzuki group \(6.{\rm Suz}\). Trans. Am. Math. Soc. 373, 2007–2044 (2020)

    Article  Google Scholar 

  19. Katz, N.: With an Appendix by Tiep, P. H., Rigid local systems on \({\mathbb{A}}^1\) with finite monodromy. Mathematika 64, 785–846 (2018)

  20. Katz, N., Tiep, P.H.: Rigid local systems and finite symplectic groups. Finite Fields Appl. 59, 134–174 (2019)

    Article  MathSciNet  Google Scholar 

  21. Katz, N., Tiep, P.H.: Local systems and finite unitary and symplectic groups. Adv. Math. 358, 106859 (2019)

  22. Katz, N., Tiep, P.H.: Exponential sums and total Weil representations of finite symplectic and unitary groups. Proc. Lond. Math. Soc. (2020) (to appear)

  23. Kleidman, P.B., Liebeck, M.W.: The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 129. Cambridge University Press, Cambridge (1990)

  24. Seitz, G.M.: Flag-transitive subgroups of finite Chevalley groups. Ann. Math. 97, 27–56 (1973)

    Article  MathSciNet  Google Scholar 

  25. Simpson, W., Frame, J.S.: The character tables for \(SL(3, q)\), \(SU(3, q^{2})\), \(PSL(3, q)\), \(PSU(3, q^{2})\). Can. J. Math. 25, 486–494 (1973)

    Article  Google Scholar 

  26. Tiep, P.H.: Weil representations of finite general linear groups and finite special linear groups. Pac. J. Math. 279, 481–498 (2015)

    Article  MathSciNet  Google Scholar 

  27. Tiep, P.H., Zalesskii, A.E.: Minimal characters of the finite classical groups. Commun. Algebra 24, 2093–2167 (1996)

    Article  MathSciNet  Google Scholar 

  28. Tiep, P.H., Zalesskii, A.E.: Unipotent elements of finite groups of Lie type and realization fields of their complex representations. J. Algebra 271, 327–390 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Huu Tiep.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. H. Tiep gratefully acknowledges the support of the NSF (Grant DMS-1840702), and the Joshua Barlaz Chair in Mathematics. The authors are grateful to the referee for careful reading of the paper and many comments and suggestions that help greatly improve the exposition of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, N.M., Tiep, P.H. Rigid local systems and finite general linear groups. Math. Z. 298, 1293–1321 (2021). https://doi.org/10.1007/s00209-020-02617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02617-2

Keywords

Mathematics Subject Classification

Navigation