A generalized tetrahedral property


We present examples of metric spaces that are not Riemannian manifolds nor dimensionally homogeneous that satisfy Sormani’s Tetrahedral Property. We then note that Euclidean cones over metric spaces with small diameter do not satisfy this property. Therefore, we extend the tetrahedral property to a less restrictive one and prove that this generalized definition retains all the results of the original tetrahedral property proven by Portegies–Sormani: it provides a lower bound on the sliced filling volume and a lower bound on the volumes of balls. Thus, sequences with uniform bounds on this Generalized Tetrahedral Property also have subsequences which converge in both the Gromov–Hausdorff and Sormani–Wenger intrinsic flat sense to the same noncollapsed and countably rectifiable limit space.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Ambrosio, L., Kirchheim, B.: Currents in metric spaces. Acta Math. 185(1), 1–80 (2000)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)

  3. 3.

    Cheeger, J., Colding, T.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Federer, H.: Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band, vol. 153. Springer, New York (1969)

    Google Scholar 

  5. 5.

    Federer, H., Fleming, W.H.: Normal and integral currents. Ann. of Math. (2) 72, 458–520 (1960)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Li, N., Perales, R.: On the Sormani–Wenger Intrinsic Flat Convergence of Alexandrov spaces. J. Topol. Anal. 12(03), 819–839 (2020). https://doi.org/10.1142/S1793525319500651

  7. 7.

    Matveev, R., Portegies, J.: Intrinsic flat and Gromov–Hausdorff convergence of manifolds with Ricci curvature bounded below. J. Geom. Anal. 27(3), 1855–1873 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Perales, R.: Convergence of manifolds and metric spaces with boundary. J. Topol. Anal. 12(03), 735–774 (2020). https://doi.org/10.1142/S1793525319500638

  9. 9.

    Portegies, J., Sormani, C.: Properties of the intrinsic flat distance. Algebra Anal. 29(3), 70–143 (2017) [St. Petersburg Math. J. 29 (2018), no. 3, 475–528]

  10. 10.

    Sormani, C.: The tetrahedral property and a new Gromov–Hausdorff compactness theorem. C. R. Math. Acad. Sci. Paris 351(3–4), 119–122 (2013)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Sormani, C.: Intrinsic flat Arzela–Ascoli theorems. Commun. Anal. Geom. 26(6), 1317–1373 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Sormani, C., Wenger, S.: The intrinsic flat distance between Riemannian manifolds and other integral current spaces. J. Differ. Geom. 87(1), 117–199 (2011)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Sormani, C., Wenger, S.: Weak convergence of currents and cancellation, With an appendix by Raanan Schul and Wenger. Calc. Var. Partial Differ. Equations 38(1–2), 183–206 (2010)

    Article  Google Scholar 

  14. 14.

    Wenger, S.: Compactness for manifolds and integral currents with bounded diameter and volume. Calc. Var. Partial Differ. Equations 40(3–4), 423–448 (2011)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Raquel Perales.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Núñez-Zimbrón, J., Perales, R. A generalized tetrahedral property. Math. Z. (2020). https://doi.org/10.1007/s00209-020-02602-9

Download citation