Skip to main content
Log in

A dynamical dimension transference principle for dynamical diophantine approximation

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Diophantine approximation in dynamical systems concerns the Diophantine properties of the orbits. In classic Diophantine approximation, the powerful mass transference principle established by Beresnevich and Velani provides a general principle to the dimension for a limsup set. In this paper, we aim at finding a general principle for the dimension of the limsup set arising in a general expanding dynamical system. More precisely, let (XT) be a topological dynamical system where X is a compact metric space and \(T:X\rightarrow X\) is an expanding continuous transformation. Given \(y_o\in X\), we consider the following limsup set \(\mathcal {W}(T,f)\), driven by the dynamical system (XT),

$$\begin{aligned} \Big \{x\in X: x\in B(z, e^{-S_n(f+\log |T'|)(z)})\ \text {for some}\ z\in T^{-n}y_o\ {\text {with infinitely many}}\ n\in \mathbb {N}\Big \}, \end{aligned}$$

where \(\log |T'|\) is a function reflecting the local conformality of the transformation T, f is a non-negative continuous function over X, and \(S_n (f+ \log |T'|) (z)\) denotes the ergodic sum \((f+ \log |T'|) (z)+\cdots +(f+ \log |T'|) (T^{n-1} z)\). By proposing a dynamical ubiquity property assumed on the system (XT), we obtain that the dimensions of X and \(\mathcal {W}(T,f)\) are both related to the Bowen-Manning-McCluskey formulae, namely the solution to the pressure functions

$$\begin{aligned} \texttt {P}(-t\log |T'|)=0\ \text {and}\ \texttt {P}(-t(\log |T'|+f))=0, \text {respectively}. \end{aligned}$$

We call this phenomenon a dynamical dimension transference principle, because of its partial analogy with the mass transference principle. This general principle unifies and extends some known results which were considered only separatedly before. These include the b-adic expansions, expanding rational maps over Julia sets, inhomogeneous. Diophantine approximation on the triadic Cantor set and finite conformal iterated function systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, E., Auslander, J., Nagar, A.: Variations on the concept of topological transitivity. Stud. Math. 235(3), 225–249 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Baker, A., Schmidt, W.M.: Diophantine approximation and Hausdorff dimension. Proc. Lond. Math. Soc. (3) 21, 1–11 (1970)

    MathSciNet  MATH  Google Scholar 

  3. Ban, J., Cao, Y., Huyi, H.: The dimensions of a non-conformal repeller and an average conformal repeller. Trans. Am. Math. Soc. 362(2), 727–751 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bárány, B., Rams, M.: Shrinking targets on bedford-mcmullen carpets. Proc. Lond. Math. Soc. (3) 117(5), 951–995 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Barral, J., Seuret, S.: Heterogeneous ubiquitous systems in \(\mathbb{R}^d\) and Hausdorff dimension. Bull. Braz. Math. Soc. (N.S.) 38(3), 467–515 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Barral, J., Seuret, S.: Ubiquity and large intersections properties under digit frequencies constraints. Math. Proc. Camb. Philos. Soc. 145(3), 527–548 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Barreira, L.M., Sausso, B.: Hausdorff dimension of measures via Poincaré recurrence. Commun. Math. Phys. 219(2), 443–463 (2001)

    MATH  Google Scholar 

  8. Beresnevich, V.: Detta Dickinson and Sanju Velani. Measure theoretic laws for lim sup sets, Mem. Amer. Math. Soc. 179(846), x+91 (2006)

  9. Beresnevich, V., Velani, S.: A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures. Ann. Math. (2) 164(3), 971–992 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Bernik, V.I., Dodson, M.M.: Metric Diophantine Approximation on Manifolds, Cambridge Tracts in Mathematics, vol. 137. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  11. Bowen, R.: Hausdorff dimension of quasicircles. Inst. Hautes Études Sci. Publ. Math. 50, 11–25 (1979)

    MathSciNet  MATH  Google Scholar 

  12. Bugeaud, Y.: An inhomogeneous Jarník theorem. J. Anal. Math. 92, 327–349 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Bugeaud, Y.: Diophantine approximation and Cantor sets. Math. Ann. 341(3), 677–684 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Bugeaud, Y., Wang, B.-W.: Distribution of full cylinders and the Diophantine properties of the orbits in \(\beta \)-expansions. J. Fractal Geom. 1(2), 221–241 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Chernov, N.I., Ya, D.: Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures. Israel J. Math. 122, 1–27 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Daniel Mauldin, R., Urbański, M.: Dimensions and measures in infinite iterated function systems. Proc. Lond. Math. Soc. (3) 73(1), 105–154 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Denker, M., Urbański, M.: Ergodic theory of equilibrium states for rational maps. Nonlinearity 4(1), 103–134 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Dodson, M.M., Rynne, B.P., Vickers, J.A.G.: Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37(1), 59–73 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  20. Falconer, K.: Bounded distortion and dimension for nonconformal repellers. Math. Proc. Camb. Philos. Soc. 115(2), 315–334 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Fayad, B.: Mixing in the absence of the shrinking target property. Bull. Lond. Math. Soc. 38(5), 829–838 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Fernández, J.L., Melián, M., Pestana, D.: Quantitative recurrence properties of expanding maps (2007). arXiv:math/0703222

  23. Fernández, J.L., Melián, M., Pestana, D.: Quantitative mixing results and inner functions. Math. Ann. 337(1), 233–251 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Galatolo, S.: Dimension via waiting time and recurrence. Math. Res. Lett. 12(2–3), 377–386 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Galatolo, S., Kim, D.H.: The dynamical Borel-Cantelli lemma and the waiting time problems. Indag. Math. (N.S.) 18(3), 421–434 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Hill, R.: Velani, Sanju: Metric Diophantine approximation in Julia sets of expanding rational maps. Inst. Hautes Études Sci. Publ. Math. 85, 193–216 (1997)

    MATH  Google Scholar 

  27. Hill, R., Velani, S.: The ergodic theory of shrinking targets. Invent. Math. 119(1), 175–198 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Hill, R., Velani, S.: A zero-infinity law for well-approximable points in Julia sets. Ergodic Theory Dynam. Syst. 22(6), 1773–1782 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Kleinbock, D.Y., Margulis, G.A.: Logarithm laws for flows on homogeneous spaces. Invent. Math. 138(3), 451–494 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Kleinbock, D.Y., Wadleigh, N.: An inhomogeneous dirichlet theorem via shrinking targets. Compos. Math. 155(7), 1402–1423 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Levesley, J., Salp, C., Velani, S.L.: On a problem of K. Mahler: diophantine approximation and Cantor sets. Math. Ann. 338(1), 97–118 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Li, B., Wang, B.-W., Wu, J., Xu, J.: The shrinking target problem in the dynamical system of continued fractions. Proc. Lond. Math. Soc. (3) 108(1), 159–186 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Luis, M.: Barreira, dimension estimates in nonconformal hyperbolic dynamics. Nonlinearity 16(5), 1657–1672 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Luis, M.: Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics, vol. 272. Birkhäuser, Basel (2008)

    Google Scholar 

  35. Mahler, K.: Some suggestions for further research. Bull. Austral. Math. Soc. 29(1), 101–108 (1984)

    MathSciNet  MATH  Google Scholar 

  36. Maucourant, F.: Dynamical Borel-Cantelli lemma for hyperbolic spaces. Israel J. Math. 152, 143–155 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Mauldin, R.D., Urbański, M.: Graph Directed Markov Systems Cambridge Tracts in Mathematics, vol. 148. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  38. Melián, M.: Targets, local weak \(\sigma \)-gibbs measures and a generalized bowen dimension formula. Nonlinearity 32(3), 958–1011 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Michael, D.: Boshernitzan, Quantitative recurrence results. Invent. Math. 113(3), 617–631 (1993)

    MathSciNet  MATH  Google Scholar 

  40. Reeve, H.W.J.: Shrinking targets for countable markov maps (2011). arXiv:1107.4736

  41. Ruelle, D.: Repellers for real analytic maps. Ergodic Theory Dynam. Syst. 2(1), 99–107 (1982)

    MathSciNet  MATH  Google Scholar 

  42. Shen, L.M., Wang, B.-W.: Shrinking target problems for beta-dynamical system. Sci. China Math. 56(1), 91–104 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Sprindžuk, V.G.: Metric Theory of Diophantine Approximations. V. H. Winston & Sons, Washington, D.C.; A Halsted Press Book, Wiley, New York-Toronto, Ont.-London (1979)

  44. Urbański, M.: Diophantine analysis of conformal iterated function systems. Monatsh. Math. 137(4), 325–340 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79. Springer, New York, Berlin (1982)

    Google Scholar 

  46. Zhao, C., Chen, E.: Quantitative recurrence properties for systems with non-uniform structure. Taiwan. J. Math. 22(1), 225–244 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially done during the authors visiting the Department of Mathematics of The Chinese University of Hong Kong (CUHK) and the Faculty of Information Technology of Macau University of Science and Technology (MUST). Both authors thank Prof. Dejun Feng and Chao Ma for their hospitality during the visit to CUHK and MUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B.-W. Wang is supported by NSFC Grants 11722105 and 11831007, G.-H. Zhang is supported by NSFC Grants 11671094, 11722103 and 11731003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BW., Zhang, GH. A dynamical dimension transference principle for dynamical diophantine approximation. Math. Z. 298, 161–191 (2021). https://doi.org/10.1007/s00209-020-02589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02589-3

Mathematics Subject Classification

Navigation