Skip to main content
Log in

Exponential growth of torsion in the cohomology of arithmetic hyperbolic manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For \(d=2n+1\) a positive odd integer, we consider sequences of arithmetic subgroups of \({\text {SO}}_0(d,1)\) and yielding corresponding hyperbolic manifolds of finite volume and show that, under appropriate and natural assumptions, the torsion of the associated cohomology groups grows exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borel, A., Harish, C.: Arithmetic subgroups of algebraic groups. Ann. Math. 2(75), 485–535 (1962)

    Article  MathSciNet  Google Scholar 

  2. Bismut, J.-M., Ma, X., Zhang, W.: Opérateurs de Toeplitz et torsion analytique asymptotique. C.R. Math. Acad. Sci. Paris 349(17–18), 977–981 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bismut, J.-M., Ma, X., Zhang, W.: Asymptotic torsion and Toeplitz operators. J. Inst. Math. Jussieu 16(2), 223–349 (2017)

    Article  MathSciNet  Google Scholar 

  4. Borel, A.: Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. In: Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris (1969)

  5. Bergeron, N.: Mehmet Haluk Sengün, and Akshay Venkatesh, torsion homology growth and cycle complexity of arithmetic manifolds. Duke Math. J. 165(9), 1629–1693 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bergeron, N., Venkatesh, A.: The asymptotic growth of torsion homology for arithmetic groups. J. Inst. Math. Jussieu 12(2), 391–447 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller, Astérisque, no. 205, 235, With an appendix by Francois Laudenbach (1992)

  8. Cheeger, J.: Analytic torsion and the heat equation. Ann. Math. (2) 109(2), 259–322 (1979)

    Article  MathSciNet  Google Scholar 

  9. Deitmar, A., Hoffmann, W.: Spectral estimates for towers of noncompact quotients. Canad. J. Math. 51(2), 266–293 (1999)

    Article  MathSciNet  Google Scholar 

  10. Elstrodt, J., Grunewald, F., Mennicke, J.: Groups acting on hyperbolic space, Springer Monographs in Mathematics, Harmonic Analysis and Number Theor. Springer, Berlin (1998)

    Book  Google Scholar 

  11. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)

    Book  Google Scholar 

  12. Kenneth, S.: Brown, Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, New York. Berlin (1982)

    Google Scholar 

  13. Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math. (2) 74, 329–387 (1961)

    Article  MathSciNet  Google Scholar 

  14. Lott, J.: Heat kernels on covering spaces and topological invariants. J. Differ. Geom. 35(2), 471–510 (1992)

    Article  MathSciNet  Google Scholar 

  15. Mathai, V.: \(L^2\)-analytic torsion. J. Funct. Anal. 107(2), 369–386 (1992)

    Article  MathSciNet  Google Scholar 

  16. Milnor, J.: A duality theorem for Reidemeister torsion. Ann. Math. (2) 76, 137–147 (1962)

    Article  MathSciNet  Google Scholar 

  17. Matsushima, Y., Murakami, S.: On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds. Ann. Math. (2) 78, 365–416 (1963)

    Article  MathSciNet  Google Scholar 

  18. Marshall, S., Müller, W.: On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds. Duke Math. J. 162(5), 863–888 (2013)

    Article  MathSciNet  Google Scholar 

  19. Morris, Dave Witte: Introduction to arithmetic groups, Deductive Press, [place of publication not identified], (2015)

  20. Müller, W., Pfaff, J.: Analytic torsion of complete hyperbolic manifolds of finite volume. J. Funct. Anal. 263(9), 2615–2675 (2012)

    Article  MathSciNet  Google Scholar 

  21. Müller, W., Pfaff, J.: On the asymptotics of the Ray-Singer analytic torsion for compact hyperbolic manifolds. Int. Math. Res. Not. IMRN 13, 2945–2983 (2013)

    Article  MathSciNet  Google Scholar 

  22. Müller, W., Pfaff, J.: The analytic torsion and its asymptotic behaviour for sequences of hyperbolic manifolds of finite volume. J. Funct. Anal. 267(8), 2731–2786 (2014)

    Article  MathSciNet  Google Scholar 

  23. Müller, W., Pfaff, J.: On the growth of torsion in the cohomology of arithmetic groups. Math. Ann. 359(1–2), 537–555 (2014)

    Article  MathSciNet  Google Scholar 

  24. Müller, W., Rochon, F.: Analytic torsion and Reidemeister torsion on hyperbolic manifolds with cusps. Geom. Funct. Anal. (2020). https://doi.org/10.1007/s00039-020-00536-2

  25. Müller, W.: Analytic torsion and \(R\)-torsion for unimodular representations. J. Am. Math. Soc. 6(3), 721–753 (1993)

    Article  MathSciNet  Google Scholar 

  26. Müller, W.: The asymptotics of the Ray-Singer analytic torsion for hyperbolic \(3\)-manifolds, Metric and Dinferential Geometry. In: The Jeff Cheeger Anniversary Volume, Progress in Math., vol. 297, Birkhäuser, pp. 317–352 (2012)

  27. Pfaff, J.: Exponential growth of homological torsion for towers of congruence subgroups of Bianchi groups. Ann. Glob. Anal. Geom. 45(4), 267–285 (2014)

    Article  MathSciNet  Google Scholar 

  28. Pfaff, J.: A gluing formula for the analytic torsion on hyperbolic manifolds with cusps. J. Inst. Math. Jussieu 16(4), 673–743 (2017)

    Article  MathSciNet  Google Scholar 

  29. Pfaff, J., Raimbault, J.: The torsion in symmetric powers on congruence subgroups of Bianchi groups. Trans. AMS 373(1), 109–148 (2020)

    Article  MathSciNet  Google Scholar 

  30. Raimbault, J.: Analytic, Reidemeister and homological torsion for congruence three-manifolds. Ann. Fac. Sci. Toulouse Math. 28(3), 417–469 (2019)

    Article  MathSciNet  Google Scholar 

  31. Raimbault, J.: Asymptotics of analytic torsion for hyperbolic three-manifolds. Comment. Math. Helv. 94(3), 459–531 (2019)

    Article  MathSciNet  Google Scholar 

  32. van Est, W.T.: A generalization of the Cartan-Leray spectral sequence. I, II. Nederl. Akad. Wetensch. Proc. Ser. A 61 = Indag. Math. 20, 399–413 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the hospitality of the Centre International de Rencontres Mathématiques (CIRM) where this project started. The second author was supported by NSERC and a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Rochon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, W., Rochon, F. Exponential growth of torsion in the cohomology of arithmetic hyperbolic manifolds. Math. Z. 298, 79–106 (2021). https://doi.org/10.1007/s00209-020-02587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02587-5

Navigation