Skip to main content
Log in

On Lisbon integrals

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce new complex analytic integral transforms, the Lisbon Integrals, which naturally arise in the study of the affine space \(\mathbb {C}^k\) of unitary polynomials \(P_s(z)\) where \(s\in \mathbb {C}^k\) and \(z\in \mathbb {C}\), \(s_i\) identified to the i-th symmetric function of the roots of \(P_s(z)\). We completely determine the \(\mathscr {D}\)-modules (or systems of partial differential equations) the Lisbon Integrals satisfy and prove that they are their unique global solutions. If we specify a holomorphic function f in the z-variable, our construction induces an integral transform which associates a regular holonomic module quotient of the sub-holonomic module we computed. We illustrate this correspondence in the case of a 1-parameter family of exponentials \(f_t(z) = exp(t z)\) with t a complex parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. despite the “denominators” in the formula

    $$\begin{aligned} Trace(z^pf(z)ds_1 \wedge \cdots \wedge ds_{k-1} \wedge dz) = \left( \sum _{P_{s}(z_j)= 0} \frac{{z_j}^pf(z_j)}{P'_{s}(z_j)}\right) ds_1\wedge \cdots \wedge ds_k \end{aligned}$$

    theses forms have no singularity on the discriminant hypersurface \(\{\Delta (s) = 0\}\) in \(\mathbb {C}^k\).

  2. We shall explain in the proof what we mean here.

  3. Note that z and \(\partial _{z}\) commute with \(\partial _{s_{h}}\) for \(h \in [1, k-1]\) in \(\mathscr {D}_H\).

  4. Remember that t is a fixed complex parameter.

References

  1. Barlet, D.: On partial differential operators annihilating trace functions (to appear)

  2. Barlet, D.: Développement asymptotique des fonctions obtenues par intégration sur les fibres. Invent. Math. 68(1), 129–174 (1982)

    Article  MathSciNet  Google Scholar 

  3. Barlet, D.: Fonctions de type trace. Ann. Inst. Fourier 33(2), 43–76 (1983)

    Article  MathSciNet  Google Scholar 

  4. Barlet, D., Maire, H.-M.: Asymptotique des intégrales-fibres. Ann. Inst. Fourier 43(5), 1267–1299 (1993)

    Article  MathSciNet  Google Scholar 

  5. D. Barlet and J. Magnússon Cycles analytiques complexes I: théorèmes de préparation des cycles, Cours Spécialisés 22, Société Mathématique de France (2014)

  6. Bjork, J-E .: Analytical \({\cal{D}}\)-Modules and Applications, Mathematics and Its Applications. Kluwer Academic Publishers, vol. 247 (1993)

  7. Kashiwara, M.: On the holonomic systems of linear differential equations II. Invent. Math. 49, 121–135 (1978)

    Article  MathSciNet  Google Scholar 

  8. Kashiwara, M.: \(\cal{D}\)-modules and microlocal calculus, Translations of Mathematical Monographs 217. American Math, Soc (2003)

    Google Scholar 

  9. Kashiwara, M.: The Riemann–Hilbert problem for holonomic systems. Publ. RIMS, Kyoto University 20, 319–365 (1984)

    Article  MathSciNet  Google Scholar 

  10. Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren der Math. Wiss. 292, Springer (1990)

  11. Kashiwara, M., Schapira, P.: Moderate and formal cohomology associated with constructible sheaves, Mémoires de la SMF 64, Société Mathématique de France (1996)

  12. Loeser, F.: Fonctions zêta locales d’Igusa à plusieurs variables, intégration dans les fibres, et discriminants. Ann. Sci. École Norm. Sup. 22(3), 435–471 (1989)

    Article  MathSciNet  Google Scholar 

  13. Sabbah, C.: Proximité évanescente. II. Équations fonctionnelles pour plusieurs fonctions analytiques. Compos. Math. 64(2), 213–241 (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Monteiro Fernandes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of T. Monteiro Fernandes was supported by Fundação para a Ciência e a Tecnologia, UID/MAT/04561/2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barlet, D., Monteiro Fernandes, T. On Lisbon integrals. Math. Z. 297, 923–941 (2021). https://doi.org/10.1007/s00209-020-02540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02540-6

Mathematics Subject Classification

Navigation