Abstract
In this paper, we study the non-vanishing of the central values of the Rankin-Selberg L-function of two adelic Hilbert primitive forms \(\mathbf{f}\) and \(\mathbf{g}\), both of which have varying weight parameter k. We prove that, for sufficiently large \(k\in 2{\mathbb {N}}^n\), there are at least \(\frac{\mathrm{N}(k)}{\log ^c \mathrm{N}(k)}\) adelic Hilbert primitive forms \(\mathbf{f}\) of weight k for which \(L(\frac{1}{2}, \mathbf{f}\otimes \mathbf{g})\) are nonzero.
This is a preview of subscription content,
to check access.References
Banks, W.D.: Twisted symmetric-square \(L\)-functions and the nonexistence of Siegel zeros on \({\rm GL}(3)\). Duke Math. J. 87, 343–353 (1997)
Blasius, D.: Hilbert modular forms and the Ramanujan conjecture, in Noncommutative geometry and number theory, vol. of Aspects Math., Wiesbaden, Vieweg, E37, 35–56 (2006)
Blomer, V.: Period integrals and Rankin-Selberg \(L\)-functions on \({{\rm GL}}(n)\). Geom. Funct. Anal. 22, 608–620 (2012)
Carletti, E., Monti Bragadin, G., Perelli, A.: On general \(L\)-functions. Acta Arith. 66, 147–179 (1994)
Chowla, S.: The Riemann hypothesis and Hilbert’s tenth problem, mathematics and its applications, vol. 4. Gordon and Breach Science Publishers, New York (1965)
Duke, W.: The critical order of vanishing of automorphic \(L\)-functions with large level. Invent. Math. 119, 165–174 (1995)
Freitag, E.: Hilbert modular forms. Springer, Berlin (1990)
Ganguly, S., Hoffstein, J., Sengupta, J.: Determining modular forms on \(SL_2(\mathbb{Z})\) by central values of convolution \(L\)-functions. Math. Ann. 345, 843–857 (2009)
Garrett, P.: Holomorphic Hilbert modular forms, The Wadsworth & Brooks/Cole mathematics series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1990)
Goldfeld, D., Hoffstein, J., Lieman, D.: Appendix: an effective zero-free region. Ann. Math. 140, 177–181 (1994)
Hamieh, A., Tanabe, N.: Determining Hilbert modular forms by central values of Rankin-Selberg convolutions: the weight aspect. Ramanujan J. 45, 615–637 (2018)
Hoffstein, J., Lockhart, P.: Coefficients of maass forms and the Siegel zero. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. Ann. Math. 140(2), 161–181 (1994)
Iwaniec, H., Kowalski, E.: Analytic number theory, vol. 53. American Mathematical Society, Providence (2004)
Lau, Y.-K., Tsang, K.-M.: A mean square formula for central values of twisted automorphic \(L\)-functions. Acta Arith. 118, 231–262 (2005)
Liu, S.-C., Masri, R.: Nonvanishing of Rankin-Selberg \(L\)-functions for Hilbert modular forms. Ramanujan J. 34, 227–236 (2014)
Luo, W.: Poincaré series and Hilbert modular forms. Ramanujan J. 7, 129–140 (2003)
Michel, P., Venkatesh, A.: The subconvexity problem for \({{\rm GL}}_2\). Publ. Math. IHES 111, 171–271 (2010)
Raghuram, A., Tanabe, N.: Notes on the arithmetic of Hilbert modular forms. J. Ramanujan Math. Soc. 26, 261–319 (2011)
Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J. 45, 637–679 (1978)
Soundararajan, K.: Nonvanishing of quadratic Dirichlet \(L\)-functions at \(s=\frac{1}{2}\). Ann. Math. 152(2), 447–488 (2000)
Stark, H.M.: Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23, 135–152 (1974)
Trotabas, D.: Non annulation des fonctions \(L\) des formes modulaires de Hilbert au point central, Ann. Inst. Fourier Grenoble 61, 187–259 (2011)
Venkatesh, A.: “Beyond endoscopy” and special forms on GL(2). J. Reine Angew. Math. 577, 23–80 (2004)
Acknowledgements
The authors would like to thank Professors Amir Akbary, Ram Murty, and Nathan Ng for encouraging comments and useful discussions about the topic of this paper. The authors are also grateful to the referee for many helpful suggestions that improved the exposition of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Research of Alia Hamieh was partially supported by PIMS Postdoctoral Fellowship at the University of Lethbridge.
Rights and permissions
About this article
Cite this article
Hamieh, A., Tanabe, N. Non-vanishing of Rankin-Selberg convolutions for Hilbert modular forms. Math. Z. 297, 81–97 (2021). https://doi.org/10.1007/s00209-020-02502-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-020-02502-y