Skip to main content
Log in

Non-vanishing of Rankin-Selberg convolutions for Hilbert modular forms

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we study the non-vanishing of the central values of the Rankin-Selberg L-function of two adelic Hilbert primitive forms \(\mathbf{f}\) and \(\mathbf{g}\), both of which have varying weight parameter k. We prove that, for sufficiently large \(k\in 2{\mathbb {N}}^n\), there are at least \(\frac{\mathrm{N}(k)}{\log ^c \mathrm{N}(k)}\) adelic Hilbert primitive forms \(\mathbf{f}\) of weight k for which \(L(\frac{1}{2}, \mathbf{f}\otimes \mathbf{g})\) are nonzero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banks, W.D.: Twisted symmetric-square \(L\)-functions and the nonexistence of Siegel zeros on \({\rm GL}(3)\). Duke Math. J. 87, 343–353 (1997)

    Article  MathSciNet  Google Scholar 

  2. Blasius, D.: Hilbert modular forms and the Ramanujan conjecture, in Noncommutative geometry and number theory, vol.  of Aspects Math., Wiesbaden, Vieweg, E37, 35–56 (2006)

  3. Blomer, V.: Period integrals and Rankin-Selberg \(L\)-functions on \({{\rm GL}}(n)\). Geom. Funct. Anal. 22, 608–620 (2012)

    Article  MathSciNet  Google Scholar 

  4. Carletti, E., Monti Bragadin, G., Perelli, A.: On general \(L\)-functions. Acta Arith. 66, 147–179 (1994)

    Article  MathSciNet  Google Scholar 

  5. Chowla, S.: The Riemann hypothesis and Hilbert’s tenth problem, mathematics and its applications, vol. 4. Gordon and Breach Science Publishers, New York (1965)

    Google Scholar 

  6. Duke, W.: The critical order of vanishing of automorphic \(L\)-functions with large level. Invent. Math. 119, 165–174 (1995)

    Article  MathSciNet  Google Scholar 

  7. Freitag, E.: Hilbert modular forms. Springer, Berlin (1990)

    Book  Google Scholar 

  8. Ganguly, S., Hoffstein, J., Sengupta, J.: Determining modular forms on \(SL_2(\mathbb{Z})\) by central values of convolution \(L\)-functions. Math. Ann. 345, 843–857 (2009)

    Article  MathSciNet  Google Scholar 

  9. Garrett, P.: Holomorphic Hilbert modular forms, The Wadsworth & Brooks/Cole mathematics series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1990)

    Google Scholar 

  10. Goldfeld, D., Hoffstein, J., Lieman, D.: Appendix: an effective zero-free region. Ann. Math. 140, 177–181 (1994)

    Article  Google Scholar 

  11. Hamieh, A., Tanabe, N.: Determining Hilbert modular forms by central values of Rankin-Selberg convolutions: the weight aspect. Ramanujan J. 45, 615–637 (2018)

    Article  MathSciNet  Google Scholar 

  12. Hoffstein, J., Lockhart, P.: Coefficients of maass forms and the Siegel zero. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. Ann. Math. 140(2), 161–181 (1994)

    Article  MathSciNet  Google Scholar 

  13. Iwaniec, H., Kowalski, E.: Analytic number theory, vol. 53. American Mathematical Society, Providence (2004)

    Google Scholar 

  14. Lau, Y.-K., Tsang, K.-M.: A mean square formula for central values of twisted automorphic \(L\)-functions. Acta Arith. 118, 231–262 (2005)

    Article  MathSciNet  Google Scholar 

  15. Liu, S.-C., Masri, R.: Nonvanishing of Rankin-Selberg \(L\)-functions for Hilbert modular forms. Ramanujan J. 34, 227–236 (2014)

    Article  MathSciNet  Google Scholar 

  16. Luo, W.: Poincaré series and Hilbert modular forms. Ramanujan J. 7, 129–140 (2003)

    Article  MathSciNet  Google Scholar 

  17. Michel, P., Venkatesh, A.: The subconvexity problem for \({{\rm GL}}_2\). Publ. Math. IHES 111, 171–271 (2010)

    Article  Google Scholar 

  18. Raghuram, A., Tanabe, N.: Notes on the arithmetic of Hilbert modular forms. J. Ramanujan Math. Soc. 26, 261–319 (2011)

    MathSciNet  Google Scholar 

  19. Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J. 45, 637–679 (1978)

    Article  MathSciNet  Google Scholar 

  20. Soundararajan, K.: Nonvanishing of quadratic Dirichlet \(L\)-functions at \(s=\frac{1}{2}\). Ann. Math. 152(2), 447–488 (2000)

    Article  MathSciNet  Google Scholar 

  21. Stark, H.M.: Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23, 135–152 (1974)

    Article  MathSciNet  Google Scholar 

  22. Trotabas, D.: Non annulation des fonctions \(L\) des formes modulaires de Hilbert au point central, Ann. Inst. Fourier Grenoble 61, 187–259 (2011)

    Article  MathSciNet  Google Scholar 

  23. Venkatesh, A.: “Beyond endoscopy” and special forms on GL(2). J. Reine Angew. Math. 577, 23–80 (2004)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professors Amir Akbary, Ram Murty, and Nathan Ng for encouraging comments and useful discussions about the topic of this paper. The authors are also grateful to the referee for many helpful suggestions that improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Tanabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of Alia Hamieh was partially supported by PIMS Postdoctoral Fellowship at the University of Lethbridge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamieh, A., Tanabe, N. Non-vanishing of Rankin-Selberg convolutions for Hilbert modular forms. Math. Z. 297, 81–97 (2021). https://doi.org/10.1007/s00209-020-02502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02502-y

Keywords

Mathematics Subject Classification

Navigation