Abstract
This is a contribution to the classification of finite-dimensional Hopf algebras over an algebraically closed field \(\mathbb {k}\) of characteristic 0. Concretely, we show that a finite-dimensional Hopf algebra whose Hopf coradical is basic is a lifting of a Nichols algebra of a semisimple Yetter–Drinfeld module and we explain how to classify Nichols algebras of this kind. We provide along the way new examples of Nichols algebras and Hopf algebras with finite Gelfand–Kirillov dimension.
Similar content being viewed by others
References
Andruskiewitsch, N.: Some Remarks on Nichols Algebras. In Bergen, Catoiu and Chin (eds) Hopf Algebras, pp. 25–45. M. Dekker, New York (2004)
Andruskiewitsch, N.: On finite-dimensional Hopf algebras. In: Proceedings of the ICM Seoul 2014 Vol. II, 117–141 (2014)
Andruskiewitsch, N.: An introduction to Nichols Algebras. In: Cardona, A., Morales, P., Ocampo, H., Paycha, S., Reyes, A. (eds.) Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, pp. 135–195. Springer, New York (2017)
Andruskiewitsch, N., Angiono, I.: On Nichols algebras with generic braiding. In: Brzezinski, T., Gomez Pardo, J.L., Shestakov, I., Smith, P.F. (eds.) Modules and Comodules, Trends in Mathematics, pp. 47–64. Birkhauser, Basel (2008)
Andruskiewitsch, N., Angiono, I.: On finite dimensional Nichols algebras of diagonal type. Bull. Math. Sci. 7, 353–573 (2017)
Andruskiewitsch, N., Angiono, I., Heckenberger, I.: On finite GK-dimensional Nichols algebras over abelian groups. Mem. Amer. Math. Soc. (to appear)
Andruskiewitsch, N., Angiono, I., Heckenberger, I.: On Nichols algebras of infinite rank with finite Gelfand–Kirillov dimension. arXiv:1805.12000
Andruskiewitsch, N., Cuadra, J.: On the structure of (co-Frobenius) Hopf algebras. J. Noncommut. Geom. 7, 83–104 (2013)
Andruskiewitsch, N., Heckenberger, I., Schneider, H.-J.: The Nichols algebra of a semisimple Yetter–Drinfeld module. Am. J. Math. 132, 1493–1547 (2010)
Andruskiewitsch, N., Schneider, H.-J.: Lifting of quantum linear spaces and pointed Hopf algebras of order \( p^3\). J. Algebra 209, 658–691 (1998)
Andruskiewitsch, N., Schneider, H.-J.: Finite quantum groups and Cartan matrices. Adv. Math. 154, 1–45 (2000)
Andruskiewitsch, N., Schneider, H.J.: Pointed Hopf algebras. Recent Developments in Hopf Algebras Theory, vol. 43, pp. 1–68. Cambridge University Press, Cambridge (2002)
Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. 171, 375–417 (2010)
Angiono, I.: A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems. J. Eur. Math. Soc. 17, 2643–2671 (2015)
Angiono, I.: On Nichols algebras of diagonal type. J. Reine Angew. Math. 683, 189–251 (2013)
Angiono, I.: Distinguished pre-Nichols algebras. Transf. Groups 21, 1–33 (2016)
Angiono, I., García Iglesias, A.: Liftings of Nichols algebras of diagonal type II. All liftings are cocycle deformations. arXiv:1605.03113
Angiono, I., García Iglesias, A.: Pointed Hopf algebras: a guided tour to the liftings. arXiv:1807.07154
Artin, M., Schelter, W.F.: Graded algebras of global dimension 3. Adv. Math. 66, 171–216 (1987)
Artin, M., Schelter, W.F., Tate, J.: Quantum deformations of \(GL_n\). Commun. Pure Appl. Math. 44, 879–895 (1991)
Artin, M., Small, L.W., Zhang, J.J.: Generic flatness for strongly Noetherian algebras. J. Algebra 221, 579–610 (1999)
Cuntz, M., Lentner, S.: A simplicial complex of Nichols algebras. Math. Z. 285, 647–683 (2017)
Doi, Y., Takeuchi, M.: Multiplication alteration by two-cocycles—the quantum version. Commun. Algebra 22, 5715–5732 (1994)
Drinfeld, V.G.: Hopf algebras and the quantum Yang–Baxter equation. Sov. Math. Dokl. 32, 256–258 (1985)
Elle, S.: Classification of relation types of Ore extensions of dimension 5. Commun. Algebra 45, 1323–1346 (2017)
García, G.A., Giraldi, J.M.J.: On Hopf Algebras over quantum subgroups. J. Pure Appl. Algebra 223, 738–768 (2019)
García, G.A., Mastnak, M.: Deformation by cocycles of pointed Hopf algebras over non-abelian groups. Math. Res. Lett. 22, 59–92 (2015)
Graña, M.: A freeness theorem for Nichols algebras. J. Algebra 231, 235–257 (2000)
Heckenberger, I.: The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math. 164, 175–188 (2006)
Heckenberger, I.: Classification of arithmetic root systems. Adv. Math. 220, 59–124 (2009)
Heckenberger, I., Schneider, H.-J.: Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid. Isr. J. Math. 197, 139–187 (2013)
Heckenberger, I., Schneider, H.-J.: Yetter–Drinfeld modules over bosonizations of dually paired Hopf algebras. Adv. Math. 244, 54–394 (2013)
Heckenberger, I., Vendramin, L.: A classification of Nichols algebras of semi-simple Yetter–Drinfeld modules over non-abelian groups. J. Eur. Math. Soc. 19, 299–356 (2017)
Heckenberger, I., Yamane, H.: Drinfel’d doubles and Shapovalov determinants. Rev. Un. Mat. Argent. 51, 107–146 (2010)
Heckenberger, I., Yamane, H.: A generalization of Coxeter groups, root systems, and Matsumoto’s theorem. Math. Z. 259, 255–276 (2008)
Hu, N., Xiong, R.: On families of Hopf algebras without the dual Chevalley property. Rev. Un. Mat. Argent. 59, 443–469 (2018)
Lusztig, G.: Introduction to quantum groups. Birkhäuser, Basel (1993)
Li, J., Wang, X.: Some five-dimensional Artin–Schelter regular algebras obtained by deforming a Lie algebra. J. Algebra Appl. 15(04), 1650060 (2016)
Majid, S.: Doubles of quasitriangular Hopf algebras. Commun. Algebra 19, 3061–3073 (1991)
Montgomery, S.: Hopf Algebras and their Actions on Rings, CMBS 82. American Mathematical Society, Providence (1993)
Nevins, T.A., Stafford, J.T.: Sklyanin algebras and Hilbert schemes of points. Adv. Math. 210, 405–478 (2007)
Pogorelsky, B., Vay, C.: Verma and simple modules for quantum groups at non-abelian groups. Adv. Math. 301, 423–457 (2016)
Radford, D.E., Schneider, H.-J.: On the simple representations of generalized quantum groups and quantum doubles. J. Algebra 319, 3689–3731 (2008)
Rosso, M.: Quantum groups and quantum shuffles. Invent. Math. 133, 399–416 (1998)
Schauenburg, P.: Hopf bi-Galois extensions. Commun. Algebra 24, 3797–3825 (1996)
Ufer, S.: PBW bases for a class of braided Hopf algebras. J. Algebra 280, 84–119 (2004)
Ufer, S.: Triangular braidings and pointed Hopf algebras. J. Pure Appl. Algebra 210, 307–320 (2007)
Ufer, S.: Braided Hopf algebras of triangular type. PhD thesis (2004). https://edoc.ub.uni-muenchen.de/2477/1/ufer_stefan.pdf
Wang, Q., Wu, Q.S.: A class of AS-regular algebras of dimension five. J. Algebra 362, 117–144 (2012)
Xiong, R.: On Hopf algebras over the unique 12-dimensional Hopf algebra without the dual Chevalley property. Commun. Algebra 47, 1516–1540 (2019)
Xiong, R.: Finite-dimensional Hopf algebras over the smallest non-pointed basic Hopf algebra. arXiv:1801.06205
Xiong, R.: On Hopf algebras over basic Hopf algebras of dimension 24. arXiv:1809.03938
Zhang, J.J., Zhang, J.: Double extension regular algebras of type. J. Algebra 322, 373–409 (2009)
Acknowledgements
This paper grew from conversations following a talk by Oscar Márquez on joint work in progress with Dirceu Bagio and Gastón A. García at the Colloquium Quantum 17 hosted by the University of Talca (Chile). We thank them for sharing their results as well as María Ronco and María Inés Icaza for hospitality. We also thank Hiroyuki Yamane for pointing out to us the reference [48]. We are grateful to C. D. Ward and H. West (University of Miskatonic, Arkham) for pointing out to us a mistake in the proof of Lemma 3.6. The main results of this paper were communicated at the XXII Coloquio Latinoamericano de Álgebra (Quito, August 2017); the Reunión Anual de la Unión Matemática Argentina (Buenos Aires, December 2017); the Workshop Métodos Categóricos en Álgebras de Hopf (Maldonado, December 2017); the Workshop Tensor categories, Hopf algebras and quantum groups (Marburg, January 2018).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The work of N. A. and I. A. was partially supported by CONICET, Secyt (UNC), the MathAmSud project GR2HOPF.
Rights and permissions
About this article
Cite this article
Andruskiewitsch, N., Angiono, I. On Nichols algebras over basic Hopf algebras. Math. Z. 296, 1429–1469 (2020). https://doi.org/10.1007/s00209-020-02493-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-020-02493-w