Skip to main content
Log in

The Hodge realization of the polylogarithm on the product of multiplicative groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The purpose of this article is to describe explicitly the polylogarithm class in absolute Hodge cohomology of a product of multiplicative groups, in terms of the Bloch–Wigner–Ramakrishnan polylogarithm functions. We will use the logarithmic Dolbeault complex defined by Burgos to calculate the corresponding absolute Hodge cohomology groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannai, K., Kobayashi, S., Tsuji, T.: On the de Rham and p-adic realizations of the elliptic polylogarithm for CM elliptic curves. Ann. Sci. Éc. Norm. Supér. 43(2), 185–234 (2010). https://doi.org/10.24033/asens.2119. (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beĭlinson, A.A., Levin, A.: The elliptic polylogarithm, Motives (Seattle, WA, 1991). In Proceedings of Symposia of Pure Mathematics, vol. 55, American Mathematical Society, Providence, RI, (1994), pp. 123–190

  3. Beĭlinson, A.A.: Notes on absolute Hodge cohomology, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, CO, 1983), Contemp. Math., vol. 55, American Mathematical Society, Providence, RI, (1986), pp. 35–68

  4. Blottière, D.: Réalisation de Hodge du polylogarithme d’un schéma abélien. J. Inst. Math. Jussieu 8(1), 1–38 (2009). https://doi.org/10.1017/S1474748008000315. (French, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burgos, J.I.: A logarithmic \(\mathscr {C}^\infty \) Dolbeault complex. Compos. Math. 92(1), 61–86 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Deligne, P.: Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, vol. 163. Springer-Verlag, Berlin, New York (1970)

    Book  Google Scholar 

  7. Deligne, P.: Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971). (French, MR0498551)

    Article  Google Scholar 

  8. Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77 (1974). (French, MR0498552)

    Article  Google Scholar 

  9. Dinakar R.: Analogs of the Bloch–Wigner function for higher polylogarithms, applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, CO: Contemp. Math., vol. 55, American Mathematical Society, Providence, RI 1986, 371–376 (1983). https://doi.org/10.1090/conm/055.1/862642

  10. Hain, R.M., Zucker, S.: Unipotent variations of mixed Hodge structure. Invent. Math. 88(1), 83–124 (1987)

    Article  MathSciNet  Google Scholar 

  11. Huber, A., Kings, G.: Polylogarithm for families of commutative group schemes. J. Algebraic Geom. 27, 449–495 (2018)

    Article  MathSciNet  Google Scholar 

  12. Huber, A., Wildeshaus, J.: Classical motivic polylogarithm according to Beilinson and Deligne. Doc. Math. 3, 27–133 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Kashiwara, M., Schapira, P.: Sheaves on manifolds, grundlehren der mathematischen wissenschaften [Fundamental principles of mathematical sciences], vol. 292. Springer-Verlag, Berlin (1994). (With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR1299726)

    Google Scholar 

  14. Kings, G.: A note on polylogarithms on curves and abelian schemes. Math. Z. 262(3), 527–537 (2009). https://doi.org/10.1007/s00209-008-0387-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Levin, A.: Elliptic polylogarithms: an analytic theory. Compos. Math. 106(3), 267–282 (1997). https://doi.org/10.1023/A:1000193320513

    Article  MathSciNet  MATH  Google Scholar 

  16. Wildeshaus, J.: Realizations of polylogarithms. Lecture Notes in Mathematics, vol. 1650. Springer-Verlag, Berlin (1997)

    Book  Google Scholar 

  17. Zagier, D.: The Bloch–Wigner–Ramakrishnan polylogarithm function. Math. Ann. 286(1–3), 613–624 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the referee for carefully reading the manuscript and giving helpful suggestions. The authors would also like to thank the KiPAS program FY2014–2018 of the Faculty of Science and Technology at Keio University for providing an excellent environment making this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Bannai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was conducted as part of the KiPAS program FY2014–2018 of the Faculty of Science and Technology at Keio University. This research was supported in part by KAKENHI 26247004, 16J01911, 16K13742, 18H05233 as well as the JSPS Core-to-Core program “Foundation of a Global Research Cooperative Center in Mathematics focused on Number Theory and Geometry”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannai, K., Hagihara, K., Yamada, K. et al. The Hodge realization of the polylogarithm on the product of multiplicative groups. Math. Z. 296, 1787–1817 (2020). https://doi.org/10.1007/s00209-020-02483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02483-y

Mathematics Subject Classification

Navigation