Holomorphic approximation via Dolbeault cohomology


The purpose of this paper is to study holomorphic approximation and approximation of \(\overline{\partial }\)-closed forms in complex manifolds of complex dimension \(n\ge 1\). We consider extensions of the classical Runge theorem and the Mergelyan property to domains in complex manifolds for the \({{\mathcal {C}}}^\infty \)-smooth and the \(L^2\) topology. We characterize the Runge or Mergelyan property in terms of certain Dolbeault cohomology groups and some geometric sufficient conditions are given.

This is a preview of subscription content, access via your institution.


  1. 1.

    Chakrabarti, D., Shaw, M.-C.: \({L}^2\) Serre duality on domains in complex manifolds and applications. Trans. A.M.S 364, 3529–3554 (2012)

    Article  Google Scholar 

  2. 2.

    Chen, S.-C., Shaw, M.-C.: Partial differential equations in several complex variables. In: Studies in Advanced Math, vol. 19. American Mathematical Society, International Press, Providence (2001)

  3. 3.

    Chirka, E.M., Stout, E.L.: Removable singularities in the boundary. Contrib Complex Anal Anal Geom Asp Math E26, 43–104 (1994)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Fornaess, J.E., Forstneric, F., Wold, E.F.: Holomorphic approximation: the legacy of Weierstrass, Runge, Oka–Weil, and Mergelyan. arXiv:1802.03924v2 [math.CV]

  5. 5.

    Fu, S., Laurent-Thiébaut, C., Shaw, M.C.: Hearing pseudoconvexity in lipschitz domains with holes via \({\overline{\partial }}\). Math. Zeit. 287, 1157–1181 (2017)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Henkin, G.M., Leiterer, J.: Andreotti–Grauert theory by integral formulas, Progress in Math, vol. 74. Birkhaüser, Basel, Boston, Berlin (1988)

    Book  Google Scholar 

  7. 7.

    Hörmander, L.: \(L^2\) Estimates and Existence Theorems for the \({\overline{\partial }}\) Operator. Acta Math. 113, 89–152 (1965)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Hörmander, L.: An introduction to complex analysis in several complex variables. Van Nostrand, Princeton (1990)

    MATH  Google Scholar 

  9. 9.

    Laurent-Thiébaut, C.: Théorie des fonctions holomorphes de plusieurs variables, Savoirs actuels. InterEditions/CNRS Editions, Paris (1997)

    MATH  Google Scholar 

  10. 10.

    Laurent-Thiébaut, C.: Sur l’équation de Cauchy–Riemann tangentielle dans une calotte strictement pseudoconvexe. Int. J Math. 16, 1063–1079 (2005)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Laurent-Thiébaut, C., Leiterer, J.: On the Hartogs–Bochner extension phenomenon for differential forms. Math. Ann. 284, 103–119 (1989)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Laurent-Thiébaut, C., Shaw, M.C.: On the Hausdorff property of some Dolbeault cohomology groups. Math. Zeitschrift 274, 1165–1176 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Laurent-Thiébaut, C., Shaw, M.C.: Solving \({\overline{\partial }}\) with prescribed support on hartogs triangles in \({\mathbb{C}}^2\) and \({\mathbb{CP}}^{2}\). Trans. A.M.S. 371, 6531–6546 (2019)

    Article  Google Scholar 

  14. 14.

    Lupacciolu, G.: Characterization of removable sets in strongly pseudoconvex boundaries. Ark. Mat. 32, 455–473 (1994)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Malgrange, B.: Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier 6, 271–355 (1956)

    Article  Google Scholar 

  16. 16.

    Sambou, S.: Résolution du \({\overline{\partial }}_{b}\) pour les courants prolongeables définis dans un anneau. Ann. Fac. Sci. Toulouse 11, 105–129 (2002)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Christine Laurent-Thiébaut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author would like to thank the university of Notre Dame for its support during her stay in April 2019. The second author was partially supported by National Science Foundation Grant DMS-1700003.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laurent-Thiébaut, C., Shaw, MC. Holomorphic approximation via Dolbeault cohomology. Math. Z. 296, 1027–1047 (2020). https://doi.org/10.1007/s00209-020-02470-3

Download citation


  • Runge’s theorem
  • Mergelyan property
  • Dolbeault cohomology

Mathematics Subject Classification

  • 32E30
  • 32W05