Skip to main content
Log in

Remarks on the geodesic-Einstein metrics of a relative ample line bundle

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we introduce the associated geodesic-Einstein flow for a relative ample line bundle L over the total space \(\mathcal {X}\) of a holomorphic fibration and obtain a few properties of that flow. In particular, we prove that the pair \((\mathcal {X}, L)\) is nonlinear semistable if the associated Donaldson type functional is bounded from below and the geodesic-Einstein flow has long-time existence property. We also define the associated S-classes and C-classes for \((\mathcal {X}, L)\) and obtain two inequalities between them when L admits a geodesic-Einstein metric. Finally, in the appendix of this paper, we prove that a relative ample line bundle is geodesic-Einstein if and only if an associated infinite rank bundle is Hermitian–Einstein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aikou, T.: Finsler Geometry on complex vector bundles. Riemann–Finsler Geometry. MSRI Pulblication, Vol. 50, pp. 83–105 (2004)

  2. Atiyah, M., Bott, R.: The Yang–Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A 308, 524–615 (1982)

    MATH  Google Scholar 

  3. Berndtsson, B.: Positivity of direct image bundles and convexity on the space of Kähler metrics. J. Diff. Geom. 81(3), 457–482 (2009)

    Article  Google Scholar 

  4. Berndtsson, B.: Strict and non strict positivity of direct image bundles. Math. Z. 269, 1201–1218 (2011)

    Article  MathSciNet  Google Scholar 

  5. Berndtsson, B., Paun, M., Wang, X.: Algebraic fiber spaces and curvature of higher direct images. arXiv:1704.02279

  6. Braun, M., Choi, Y. -T., Schumacher, G.: Kähler forms for families of Calabi–Yau manifolds. arXiv:1702.07886v3 (2018)

  7. Bott, R., Tu, L.: Differential Forms in Algebraic Topology. Springer, New York, Heidelberg, Berlin (1982)

    Book  Google Scholar 

  8. Bloch, S., Gieseker, D.: The positivity of the Chern classes of an ample vector bundle. Invent. Math. 12, 112–117 (1971)

    Article  MathSciNet  Google Scholar 

  9. Boucksom, S., Eyssidieux, P., Guedj, V.: An Introduction to the Kähler–Ricci Flow, Vol. 2086. Springer (2013)

  10. Chen, X.: The space of Kähler metrics. J. Diff. Geom. 56, 189–234 (2000)

    Article  Google Scholar 

  11. Diveriol, S.: Segre forms and Kobayashi–Lübke inequality. Math. Z. 283(3–4), 1033–1047 (2016)

    Article  MathSciNet  Google Scholar 

  12. Donaldson, S.K.: A new proof of a theorem of Narasimhan and Seshadri. J. Diff. Geom. 18, 269–278 (1983)

    Article  MathSciNet  Google Scholar 

  13. Donaldson, S.K.: Anti-self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 50, 1–26 (1985)

    Article  MathSciNet  Google Scholar 

  14. Donaldson, S.K.: Infinite determinates, stable bundles and curvature. Duke. J. Math. 54, 231–247 (1987)

    Article  MathSciNet  Google Scholar 

  15. Donaldson, S. K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. Northern California Symplectic Geometry Seminar, 13-33, Amer. Math. Soc. Transl. Ser. 2, 196, Adv. Math. Sci., 45, Amer. Math. Soc., Providence, RI, (1999)

  16. Donaldson, S.K.: Moment maps and diffeomorphisms. Asian J. Math. 3, 1–15 (1999)

    Article  MathSciNet  Google Scholar 

  17. Feng, H., Liu, K., Wan, X.: Chern forms of holomorphic Finsler vector bundles and some applications. Int. J. Math. 27(4), 1650030 (2016)

    Article  MathSciNet  Google Scholar 

  18. Feng, H., Liu, K., Wan, X.: A Donaldson type functional on a holomorphic Finsler vector bundle. Math. Ann. 369(3–4), 997–1019 (2017)

    Article  MathSciNet  Google Scholar 

  19. Feng, H., Liu, K., Wan, X.: Geodesic-Einstein metrics and nonlinear stabilities. Trans. Am. Math. Soc. 371(11), 8029–8049 (2019)

    Article  MathSciNet  Google Scholar 

  20. Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998)

    Book  Google Scholar 

  21. Griffiths, P., Harris, P.: Principles of Algebraic Geometry. Wiley, New York (1994)

    Book  Google Scholar 

  22. Jacob, A.: Existence of approximate Hermitian–Einstein structures on semi-stable bundles. Asian J. Math. 18(5), 859–883 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Iwanami-Princeton Univ, Press (1987)

  24. Li, J., Zhang, X.: Existence of approximate Hermitian–Einstein structures on semi-stable Higgs bundles. Calc. Var. Part. Diff. Equ. 52(3–4), 783–795 (2015)

    Article  MathSciNet  Google Scholar 

  25. Mabuchi, T.: Some Symplectic geometry on compact Kähler manifolds. I. Osaka, J. Math. 24, 227–252 (1987)

    MATH  Google Scholar 

  26. Narasimhan, M., Seshadri, C.: Stable and unitary vector bundles on compact Riemann surfaces. Ann. Math. 82, 540–567 (1965)

    Article  MathSciNet  Google Scholar 

  27. Phong, D.H., Tô, D.T.: Fully non-linear parabolic equations on compact Hermitian manifolds. arXiv:1711.10697 (2017)

  28. Song, J., Weinkove, B.: On the convergence and singularities of the \(J\)-flow with applications to the Mabuchi energy. Commun. Pure Appl. Math. LXI, 210–229 (2008)

  29. Székelyhidi, G.: An Introduction to Extremal Kähler Metrics, Graduate Studies in Mathematics, vol. 152. American Mathematical Society, New York (2014)

    Book  Google Scholar 

  30. Semmes, S.: Complex Monge–Ampere and symplectic manifolds. Am. J. Math. 114, 495–550 (1992)

    Article  MathSciNet  Google Scholar 

  31. Sun, W.: The parabolic flows for complex quotient equations. arXiv:1712.00748v1 (2017)

  32. Siu, Y.-T.: Lectures on Hermitian–Einstein Metrics for Stable Bunldes and Kähler–Einstein Metrics. Birkhäuser Verlag, Basel, Boston (1987)

    Book  Google Scholar 

  33. Tosatti, V.: KAWA Lecture notes on the Kähler–Ricci flow. arXiv:1508.04823v1 (2015)

  34. Uhlenbeck, K.K., Yau, S.T.: On existence of Hermitian–Yang–Mills connection in stable vector bundles. Commun. Pure Appl. Math. 39, 257–293 (1986)

    Article  MathSciNet  Google Scholar 

  35. Wan, X.: Positivity preserving along a flow over projective bundle. arxiv:1801.09886 (2017)

  36. Wan, X., Zhang, G.: The asymptotic of curvature of direct image bundle associated with higher powers of a relative ample line bundle. arXiv:1712.05922v1 (2017)

  37. Wang, X.: Notes on variation of Lefshetz star operaotr and \(T\)-Hodge theory. arXiv:1708.07332v1

  38. Wang, X.: A curvature formula associated to a family of pseudoconvex domains. Annales de I’institut Fourier 67(1), 269–313 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyuan Wan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An appendix by Xu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Wang, X. Remarks on the geodesic-Einstein metrics of a relative ample line bundle. Math. Z. 296, 987–1010 (2020). https://doi.org/10.1007/s00209-020-02463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02463-2

Navigation