Skip to main content
Log in

Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: the case of discrete wells

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider Toeplitz operators associated with the renormalized Bochner Laplacian on high tensor powers of a positive line bundle on a compact symplectic manifold. We study the asymptotic behavior, in the semiclassical limit, of low-lying eigenvalues and the corresponding eigensections of a self-adjoint Toeplitz operator under assumption that its principal symbol has a non-degenerate minimum with discrete wells. As an application, we prove upper bounds for low-lying eigenvalues of the Bochner Laplacian in the semiclassical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, S.T., Englis, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17, 391–490 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math. 14, 187–214 (1961)

    Article  MathSciNet  Google Scholar 

  3. Berezin, F.A.: Wick and anti-Wick symbols of operators. Mat. Sb. (N.S.) 86(128), 578–610 (1971)

    MathSciNet  Google Scholar 

  4. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)

    Article  MathSciNet  Google Scholar 

  5. Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and \({\rm gl}(N)\), \(N\rightarrow \infty \) limits. Comm. Math. Phys. 165, 281–296 (1994)

    Article  MathSciNet  Google Scholar 

  6. Borthwick, D., Paul, T., Uribe, A.: Semiclassical spectral estimates for Toeplitz operators. Ann. Inst. Fourier (Grenoble) 48, 1189–1229 (1998)

    Article  MathSciNet  Google Scholar 

  7. Borthwick, D., Uribe, A.: Almost complex structures and geometric quantization. Math. Res. Lett. 3, 845–861 (1996)

    Article  MathSciNet  Google Scholar 

  8. Boutet de Monvel, L., Guillemin, V.: The spectral theory of Toeplitz operators. Ann. Math. Studies, Nr. 99, Princeton University Press, Princeton (1981)

  9. Charles, L.: Berezin-Toeplitz operators, a semi-classical approach. Comm. Math. Phys. 239, 1–28 (2003)

    Article  MathSciNet  Google Scholar 

  10. Charles, L.: Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators. Comm. Partial Differ. Equ. 28, 1527–1566 (2003)

    Article  MathSciNet  Google Scholar 

  11. Charles, L.: Symbolic calculus for Toeplitz operators with half-forms. J. Symplectic Geom. 4, 171–198 (2006)

    Article  MathSciNet  Google Scholar 

  12. Charles, L.: Quantization of compact symplectic manifolds. J. Geom. Anal. 26, 2664–2710 (2016)

    Article  MathSciNet  Google Scholar 

  13. Dai, X., Liu, K., Ma, X.: On the asymptotic expansion of Bergman kernel. J. Differ. Geom. 72, 1–41 (2006)

    Article  MathSciNet  Google Scholar 

  14. Deleporte, A.: Low-energy spectrum of Toeplitz operators: the case of wells. J. Spectr. Theory 9, 79–125 (2019)

    Article  MathSciNet  Google Scholar 

  15. Deleporte, A.: Low-energy spectrum of Toeplitz operators with a miniwell, Preprint arXiv:1610.05902 (2016)

  16. Engliš, M.: An excursion into Berezin-Toeplitz quantization and related topics. In: Quantization, PDEs, and geometry, Oper. Theory Adv. Appl., 251, Adv. Partial Differ. Equ. (Basel), pp. 69–115, Birkhäuser/Springer, Cham (2016)

  17. Guillemin, V., Uribe, A.: The Laplace operator on the \(n\)th tensor power of a line bundle: eigenvalues which are uniformly bounded in \(n\). Asympt. Anal. 1, 105–113 (1988)

    MATH  Google Scholar 

  18. Helffer, B., Kordyukov, Y.A.: Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: The case of discrete wells. In: Spectral theory and geometric analysis, Contemp. Math. 535, pp. 55–78, AMS, Providence (2011)

  19. Helffer, B., Kordyukov, Yu. A: Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator II: the case of degenerate wells. Comm. Partial Differ. Equ. 37, 1057–1095 (2012)

  20. Helffer, B., Kordyukov, Y.A.: Semiclassical spectral asymptotics for a magnetic Schrödinger operator with non-vanishing magnetic field. In: Geometric methods in physics (Bialowieza, Poland, 2013), pp. 259–278, Birkhäuser, Basel (2014)

  21. Helffer, B., Kordyukov, Yu. A: Accurate semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator. Ann. Henri Poincaré 16, 1651–1688 (2015)

  22. Helffer, B., Morame, A.: Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185, 604–680 (2001)

    Article  MathSciNet  Google Scholar 

  23. Helffer, B., Robert, D.: Puits de potentiel généralisés et asymptotique semi-classique. Ann. Inst. H. Poincaré Phys. Théor. 41, 291–331 (1984)

    MathSciNet  MATH  Google Scholar 

  24. Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. I. Comm. Partial Differ. Equ. 9, 337–408 (1984)

    Article  MathSciNet  Google Scholar 

  25. Hsiao, C.-Y., Marinescu, G.: Berezin-Toeplitz quantization for lower energy forms. Comm. Partial Differ. Equ. 42, 895–942 (2017)

    Article  MathSciNet  Google Scholar 

  26. Ioos, L., Lu, W., Ma, X., Marinescu, G.: Berezin-Toeplitz quantization for eigenstates of the Bochner-Lap-lacian on symplectic manifolds. J. Geom. Anal. (2018). https://doi.org/10.1007/s12220-017-9977-y

    Article  MATH  Google Scholar 

  27. Kordyukov, Yu. A.: \(L^p\)-theory of elliptic differential operators on manifolds of bounded geometry. Acta Appl. Math. 23, 223–260 (1991)

  28. Kordyukov, Y.A.: On asymptotic expansions of generalized Bergman kernels on symplectic manifolds. (Russian) Algebra i Analiz 30, no. 2, 163–187 (2018), translation in St. Petersburg Math. J. 30, no. 2, 267–283 (2019)

  29. Kordyukov, Yu. A, Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds of bounded geometry. Comm. Partial Differ. Equ. 44, 1037–1071 (2019)

  30. Le Floch, Y.: Singular Bohr-Sommerfeld conditions for 1D Toeplitz operators: elliptic case. Commun. Partial Differ. Equ. 39, 213–243 (2014)

    Article  MathSciNet  Google Scholar 

  31. Le Floch, Y.: Singular Bohr-Sommerfeld conditions for 1D Toeplitz operators: hyperbolic case. Anal. PDE 7, 1595–1637 (2014)

    Article  MathSciNet  Google Scholar 

  32. Lu, W., Ma, X., Marinescu, G.: Donaldson’s \(Q\)-operators for symplectic manifolds. Sci. China Math. 60, 1047–1056 (2017)

    Article  MathSciNet  Google Scholar 

  33. Ma, X.: Geometric quantization on Kähler and symplectic manifolds. In: Proceedings of the International Congress of Mathematicians. Volume II, pp. 785–810, Hindustan Book Agency, New Delhi (2010)

  34. Ma, X., Marinescu, G.: The \({\rm Spin}^c\) Dirac operator on high tensor powers of a line bundle. Math. Z. 240, 651–664 (2002)

    Article  MathSciNet  Google Scholar 

  35. Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels. Progress in Mathematics, p. 254. Birkhäuser, Basel (2007)

  36. Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217, 1756–1815 (2008)

    Article  MathSciNet  Google Scholar 

  37. Ma, X., Marinescu, G.: Toeplitz operators on symplectic manifolds. J. Geom. Anal. 18, 565–611 (2008)

    Article  MathSciNet  Google Scholar 

  38. Raymond, N., Vũ Ngọc, S.: Geometry and spectrum in 2D magnetic wells. Ann. Inst. Fourier 65, 137–169 (2015)

    Article  MathSciNet  Google Scholar 

  39. Raymond, N.: Bound states of the magnetic Schrödinger operator. EMS Tracts in Mathematics, p. 27. European Mathematical Society (EMS), Zürich (2017)

  40. Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York, London (1978)

  41. Schlichenmaier, M.: Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys., Art. ID 927280, pp. 38 (2010)

  42. Simon, B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A (N.S.) 38, 295–308 (1983)

  43. Zelditch, S.: Index and dynamics of quantized contact transformations. Ann. Inst. Fourier (Grenoble) 47, 305–363 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri A. Kordyukov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Russian Science Foundation, project no. 17-11-01004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordyukov, Y.A. Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: the case of discrete wells. Math. Z. 296, 911–943 (2020). https://doi.org/10.1007/s00209-020-02462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02462-3

Keywords

Mathematics Subject Classification

Navigation