Skip to main content
Log in

Cohomology of line bundles on horospherical varieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A horospherical variety is a normal algebraic variety where a connected reductive algebraic group acts with an open orbit isomorphic to a torus bundle over a flag variety. In this article we study the cohomology of line bundles on complete horospherical varieties. The main tool in this article is the machinery of Grothendieck–Cousin complexes, and we also prove a Künneth-like formula for local cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bott, R.: Homogeneous vector bundles. Ann. Math. pp. 203–248 (1957)

  2. Brion, M.: Quelques propriétés des espaces homogenes sphériques. Manuscr. Math. 55(2), 191–198 (1986)

    Article  Google Scholar 

  3. Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58(2), 397–424 (1989)

    Article  MathSciNet  Google Scholar 

  4. Brion, M.: Une extension du théorème de Borel–Weil. Math. Ann. 286(4), 655–660 (1990). http://eudml.org/doc/164656

  5. Brion, M.: Representations of reductive groups in cohomology spaces. Math. Ann. 300(4), 589–604 (1994)

    Article  MathSciNet  Google Scholar 

  6. Brion, M., Pauer, F.: Valuations des espaces homogenes sphériques. Comment. Math. Helv. 62(1), 265–285 (1987)

    Article  MathSciNet  Google Scholar 

  7. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)

    MATH  Google Scholar 

  8. Demazure, M.: Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. 4(3), 507–588 (1970)

    Article  Google Scholar 

  9. Demazure, M.: A very simple proof of Bott’s theorem. Invent. Math. 33(3), 271–272 (1976)

    Article  MathSciNet  Google Scholar 

  10. Fossum, R., Iversen, B.: On Picard groups of algebraic fibre spaces. J. Pure Appl. Algebra 3, 269–280 (1973)

    Article  MathSciNet  Google Scholar 

  11. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton, NJ (1993)

    Book  Google Scholar 

  12. Gandini, J.: Embeddings of spherical homogeneous spaces. Acta Math. Sin. (Engl. Ser.) 34(3), 299–340 (2018)

    Article  MathSciNet  Google Scholar 

  13. Grothendieck, A.: Éléments de géométrie algébrique, III\(_B\). Publ. Math. IHES 17, (1963)

  14. Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux \((SGA\)\(2)\) (1968). Augmenté d’un exposé par Michèle Raynaud, Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics, Vol. 2

  15. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  16. Kempf, G.R.: The Grothendieck–Cousin complex of an induced representation. Adv. Math. 29(3), 310–396 (1978)

    Article  MathSciNet  Google Scholar 

  17. Kempf, G.R.: Some elementary proofs of basic theorems in the cohomology of quasicoherent sheaves. Rock Mt. J. Math. 10(3), 637–645 (1980)

    Article  MathSciNet  Google Scholar 

  18. Knop, F.: The Luna-Vust theory of spherical embeddings. In: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), pp. 225–249. Manoj Prakashan, Madras (1991)

  19. Manin, J.I.: Theory of commutative formal groups over fields of finite characteristic. Uspehi Mat. Nauk 18(6 (114)), 3–90 (1963)

  20. Matsumura, H.: Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, second edn. Cambridge University Press, Cambridge (1989). Translated from the Japanese by M. Reid

  21. Pasquier, B.: Variétés horosphériques de Fano. Bull. Soc. Math. Fr. 136(2), 195–225 (2008)

    Article  Google Scholar 

  22. Perrin, N.: On the geometry of spherical varieties. Transform. Groups 19(1), 171–223 (2014)

    Article  MathSciNet  Google Scholar 

  23. Serre, J.P.: Lie algebras and Lie groups. Lecture Notes in Mathematics, vol. 1500. Springer, Berlin (2006)

  24. Springer, T.A.: Linear Algebraic Groups. Springer, New York (2010)

    Google Scholar 

  25. Tchoudjem, A.: Cohomology of line bundles on the wonderful compactification of an adjoint semisimple group. C. R. Math. Acad. Sci. Paris 334(6), 441–444 (2002)

    Article  MathSciNet  Google Scholar 

  26. Tchoudjem, A.: Cohomology of line bundles over compactifications of reductive groups. Ann. Sci. École Norm. Sup (4) 37(3), 415–448 (2004)

  27. Tchoudjem, A.: Cohomology of line bundles over wonderful varieties of minimal rank. Bull. Soc. Math. Fr. 135(2), 171–214 (2007)

    Article  MathSciNet  Google Scholar 

  28. Tchoudjem, A.: Cohomology with support of line bundles over complete symmetric varieties. Transf. Groups 15(3), 655–700 (2010)

    Article  MathSciNet  Google Scholar 

  29. Timashev, D.A.: Homogeneous spaces and equivariant embeddings, vol. 138. Springer Science & Business Media (2011)

Download references

Acknowledgements

We would like to thank Michel Brion for valuable discussions and many critical comments. We also thank the anonymous referee for numerous comments and suggestions. The first author would also like to thank Max Planck Institute for Mathematics (Bonn) for the postdoctoral fellowship, and for providing very pleasant hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Dejoncheere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonala, N.C., Dejoncheere, B. Cohomology of line bundles on horospherical varieties. Math. Z. 296, 525–540 (2020). https://doi.org/10.1007/s00209-019-02454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02454-y

Keywords

Mathematics Subject Classification

Navigation