Skip to main content
Log in

Lattices for Landau–Ginzburg orbifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider a pair consisting of an invertible polynomial and a finite abelian group of its symmetries. Berglund, Hübsch, and Henningson proposed a duality between such pairs giving rise to mirror symmetry. We define an orbifoldized signature for such a pair using the orbifoldized elliptic genus. In the case of three variables and based on the homological mirror symmetry picture, we introduce two integral lattices, a transcendental and an algebraic one. We show that these lattices have the same rank and that the signature of the transcendental one is the orbifoldized signature. Finally, we give some evidence that these lattices are interchanged under the duality of pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A’Campo, N.: Le groupe de monodromie du déploiement des singularités isolées de courbes planes. I. Math. Ann. 213, 1–32 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Basalaev, A., Takahashi, A.: Hochschild cohomology and orbifold Jacobian algebras associated to invertible polynomials (2018). arXiv:1802.03912 (to appear in J. Noncommut. Geom.)

  3. Basalaev, A., Takahashi, A., Werner, E.: Orbifold Jacobian algebras for invertible polynomials (2016). arXiv:1608.08962 (preprint)

  4. Basalaev, A., Takahashi, A., Werner, E.: Orbifold Jacobian algebras for exceptional unimodal singularities. Arnold Math. J. 3(4), 483–498 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Berglund, P., Henningson, M.: Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus. Nucl. Phys. B 433, 311–332 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Berglund, P., Hübsch, T.: A generalized construction of mirror manifolds. Nucl. Phys. B 393, 377–391 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Di Francesco, P., Yankielowicz, S.: Ramond sector characters and \(N=2\) Landau–Ginzburg models. Nuclear Phys. B 409(1), 186–210 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Ebeling, W., Gusein-Zade, S.M.: Orbifold Milnor lattice and orbifold intersection form. Manuscr. Math. 155, 335–353 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Ebeling, W., Gusein-Zade, S.M., Takahashi, A.: Orbifold E-functions of dual invertible polynomials. J. Geom. Phys. 106, 184–191 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Ebeling, W., Takahashi, A.: Strange duality of weighted homogeneous polynomials. Compos. Math. 147, 1413–1433 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Ebeling, W., Takahashi, A.: Mirror symmetry between orbifold curves and cusp singularities with group action. Int. Math. Res. Not. 2013, 2240–2270 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Ebeling, W., Takahashi, A.: Variance of the exponents of orbifold Landau–Ginzburg models. Math. Res. Lett. 20(1), 51–65 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Ebeling, W., Takahashi, A.: A geometric definition of Gabrielov numbers. Rev. Mat. Complut. 27, 447–460 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Gabrielov, A.M.: Intersection matrices for certain singularities. Funkc. Anal. i Priloz. 7(3), 18–32 (1973). (Engl. translation in Functional Anal. Appl. 7, 182–193 (1974))

    MathSciNet  Google Scholar 

  15. Gabrielov, A.M.: Dynkin diagrams of unimodal singularities. Funkc. Anal. i Priloz. 8(3), 1–6 (1974). (Engl. translation in Functional Anal. Appl. 8, 192–196 (1975))

    MathSciNet  MATH  Google Scholar 

  16. Gusein-Zade, S.M.: Intersection matrices for certain singularities of functions of two variables. Funkc. Anal. i Priloz. 8(1), 1–15 (1974). (Engl. translation in Functional Anal. Appl. 8, 10–13 (1974))

    MathSciNet  MATH  Google Scholar 

  17. Gusein-Zade, S.M.: Dynkin diagrams of the singularities of functions of two variables. Funkc. Anal. i Priloz. 8(4), 23–30 (1974). (Engl. translation in Functional Anal. Appl. 8, 295–300 (1975))

    MathSciNet  Google Scholar 

  18. Hirzebruch, F., Zagier, D.: The Atiyah–Singer Theorem and Elementary Number Theory. Publish or Perish Inc, Berkeley (1974)

    MATH  Google Scholar 

  19. Ito, Y., Reid, M.: The McKay correspondence for finite subgroups of \({\rm SL}(3,{\mathbb{C}})\). In: Higher-dimensional complex varieties (Trento, 1994), pp. 221–240. de Gruyter, Berlin (1996)

  20. Krawitz, M.: FJRW-rings and Landau–Ginzburg mirror symmetry (2009). arXiv:0906.0796(preprint)

  21. Kajiura, H., Saito, K., Takahashi, A.: Matrix factorisations and representations of quivers II: type ADE case. Adv. Math. 211, 327–362 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Kajiura, H., Saito, K., Takahashi, A.: Triangulated categories of matrix factorizations for regular systems of weights with \(\varepsilon =-1\). Adv. Math. 220, 1602–1654 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Kawai, T., Yamada, Y., Yang, S.-K.: Elliptic genera and \(N=2\) superconformal field theory. Nucl. Phys. B 414, 191–212 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Kawai, T., Yang, S.-K.: Duality of orbifoldized elliptic genera. Progr. Theor. Phys. Suppl. No. 118, 277–297 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities. In: Algebra, Arithmetic, and Geometry: in honor of Yu. I. Manin, vol. II, Progr. Math., vol. 270, pp. 503–531. Birkhäuser Boston, Inc., Boston (2009)

  26. Saito, K.: Duality for regular systems of weights: a précis. In: Kashiwara, M., Matsuo, A., Saito, K., Satake, I. (eds.) Topological Field Theory, Primitive Forms and Related Topics, Progress in Math., Vol. 160, pp. 379–426. Birkhäuser, Boston Basel Berlin (1998)

  27. Saito, K.: Duality for regular systems of weights. Asian J. Math. 2, 983–1047 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Steenbrink, J.H.M.: Mixed Hodge structure on the vanishing cohomology. In: Real and Complex Singularities, Proc. Ninth Nordic Summer School, Oslo, 1976, pp. 525–563. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)

  29. Steenbrink, J.H.M.: Intersection form for quasi-homogeneous singularities. Compos. Math. 34, 211–223 (1977)

    MathSciNet  MATH  Google Scholar 

  30. Stein, W.A., et al.: Sage Mathematics Software (Version 6.9). The Sage Development Team (2015). http://www.sagemath.org

  31. Werner, E.: Orbifold Jacobian algebras of isolated singularities with group action. Ph.D. thesis, Leibniz Universität Hannover (2017)

  32. Yasuda, T.: Motivic integration over Deligne–Mumford stacks. Adv. Math. 207(2), 707–761 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by DFG. The second named author is also supported by JSPS KAKENHI Grant Number 16H06337. The authors would like to thank the referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Ebeling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebeling, W., Takahashi, A. Lattices for Landau–Ginzburg orbifolds. Math. Z. 296, 639–659 (2020). https://doi.org/10.1007/s00209-019-02441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02441-3

Mathematics Subject Classification

Navigation