Skip to main content
Log in

Correction factors for Kac–Moody groups and t-deformed root multiplicities

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study a correction factor for Kac–Moody root systems which arises in the theory of p-adic Kac–Moody groups. In affine type, this factor is known, and its explicit computation is the content of the Macdonald constant term conjecture. The data of the correction factor can be encoded as a collection of polynomials \(m_\lambda \in \mathbb {Z}[t]\) indexed by positive imaginary roots \(\lambda \). At \(t=0\) these polynomials evaluate to the root multiplicities, so we consider \(m_\lambda \) to be a t-deformation of \({{\,\mathrm{mult}\,}}(\lambda )\). We generalize the Peterson algorithm and the Berman–Moody formula for root multiplicities to compute \(m_\lambda \). As a consequence we deduce fundamental properties of \(m_\lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Braverman, A., Garland, H., Kazhdan, D., Patnaik, M.M.: An affine Gindikin–Karpelevich formula. In: Perspectives in Representation Theory, Contemp. Math., vol. 610, pp. 43–64. Amer. Math. Soc., Providence, RI (2014)

  2. Braverman, A., Kazhdan, D., Patnaik, M.M.: Iwahori–Hecke algebras for \(p\)-adic loop groups. Invent. Math. 204(2), 347–442 (2016)

    Article  MathSciNet  Google Scholar 

  3. Berman, S., Moody, R.V.: Lie algebra multiplicities. Proc. Am. Math. Soc. 76(2), 223–228 (1979)

    Article  MathSciNet  Google Scholar 

  4. Beck, J., Nakajima, H.: Crystal bases and two-sided cells of quantum affine algebras. Duke Math. J. 123(2), 335–402 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Bardy-Panse, N., Gaussent, S., Rousseau, G.: Iwahori–Hecke algebras for Kac-Moody groups over local fields. Pac. J. Math. 285(1), 1–61 (2016)

    Article  MathSciNet  Google Scholar 

  6. Cherednik, I.: Double affine Hecke algebras and Macdonald’s conjectures. Ann. Math. (2) 141(1), 191–216 (1995)

    Article  MathSciNet  Google Scholar 

  7. Fishel, S., Grojnowski, I., Teleman, C.: The strong Macdonald conjecture and Hodge theory on the loop Grassmannian. Ann. Math. (2) 168(1), 175–220 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hébert, A.: Gindikin–Karpelevich finiteness for Kac–Moody groups over local fields. Int. Math. Res. Not. IMRN 22, 7028–7049 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  10. Kang, S.-J., Kwon, J.-H., Young-Tak, O.: Peterson-type dimension formulas for graded Lie superalgebras. Nagoya Math. J. 163, 107–144 (2001)

    Article  MathSciNet  Google Scholar 

  11. Macdonald, I.G.: The Poincaré series of a Coxeter group. Math. Ann. 199, 161–174 (1972)

    Article  MathSciNet  Google Scholar 

  12. Macdonald, I.G.: Some conjectures for root systems. SIAM J. Math. Anal. 13(6), 988–1007 (1982)

    Article  MathSciNet  Google Scholar 

  13. Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge Tracts in Mathematics, vol. 157. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  14. Macdonald, I.G.: A formal identity for affine root systems. Lie groups and symmetric spaces. Am. Math. Soc. Transl. Ser. 2, 195–211 (2003)

    MATH  Google Scholar 

  15. Patnaik, M.M.: Unramified Whittaker functions on \(p\)-adic loop groups. Am. J. Math. 139(1), 175–213 (2017)

    Article  MathSciNet  Google Scholar 

  16. Peterson, D.H.: Freudenthal-type formulas for root and weight multiplicities (preprint) (1983)

  17. Patnaik, M.M., Puskás, A.: Metaplectic covers of Kac–Moody groups and Whittaker functions. preprint arXiv:1703.05265 (2017)

  18. Sloane, N.J.A., Plouffe, S.: The Encyclopedia of Integer Sequences. Academic Press, Inc., San Diego (1995). (With a separately available computer disk)

    MATH  Google Scholar 

  19. Sharma, S.S., Viswanath, S.: The \(t\)-analog of the basic string function for twisted affine Kac–Moody algebras (arXiv version is used for references). J. Algebra 363, 19–28 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Alexander Braverman, Paul E. Gunnells, Kyu-Hwan Lee, Dongwen Liu, Peter McNamara, Manish Patnaik for helpful conversations. At the beginning of this project the first author was partially supported by a PIMS postdoctoral fellowship and the second author was supported through Manish Patnaik’s Subbarao Professorship in Number Theory and an NSERC Discovery Grant at the University of Alberta. The project started at the workshop “Whittaker functions: Number Theory, Geometry and Physics” at the Banff International Research Station in 2016; we thank the organizers of this workshop. We also thank the anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinakar Muthiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Examples of the polynomial \(\chi _{\lambda }\)

Appendix A. Examples of the polynomial \(\chi _{\lambda }\)

At the end of Sect. 7 we set \(\chi _\lambda (t) = \frac{m_\lambda (t)}{(1-t)^2}\) for imaginary roots \(\lambda \). Theorem 7.6 tells us that \(\chi _\lambda \in \mathbb {Z}[t]\). In this section we tabulate certain polynomials \(\chi _\lambda (t)\), computed with the algorithm of Sect. 5.

For the rank 2 hyperbolic root system with Cartan matrix \(\begin{bmatrix}2&-3 \\-2&2 \\\end{bmatrix}\), we have:

$$\begin{aligned} \begin{array}{lll} \lambda &{} \chi _{\lambda } \\ \left( 1, 1\right) &{} 1 \\ \left( 2, 2\right) &{} -t + 1 \\ \left( 3, 2\right) &{} t^{2} + 2 \\ \left( 3, 3\right) &{} -t^{3} - 2 t + 2 \\ \left( 4, 3\right) &{} t^{4} - t^{3} + 2 t^{2} - 3 t + 3 \\ \left( 4, 4\right) &{} -t^{5} + t^{4} - 2 t^{3} + 3 t^{2} - 6 t + 3 \\ \left( 5, 4\right) &{} t^{6} - 2 t^{5} + 4 t^{4} - 6 t^{3} + 9 t^{2} - 9 t + 6 \\ \left( 5, 5\right) &{} -t^{7} + t^{6} - 4 t^{5} + 6 t^{4} - 10 t^{3} + 13 t^{2} - 13 t + 7 \\ \left( 6, 4\right) &{} t^{6} - 4 t^{5} + 5 t^{4} - 8 t^{3} + 11 t^{2} - 13 t + 6 \\ \cdots &{} \cdots \\ \left( 10, 9\right) &{} t^{16} - 7 t^{15} + 29 t^{14} - 91 t^{13} + 248 t^{12} - 584 t^{11} + 1197 t^{10} - 2170 t^{9} + 3505 t^{8} - 5039 t^{7} + 6437 t^{6} - \\ &{}7253 t^{5} + 7042 t^{4} - 5618 t^{3} + 3405 t^{2} - 1372 t + 272\\ \end{array} \end{aligned}$$

For the symmetric rank 2 hyperbolic root system with Cartan matrix \(\begin{bmatrix}2&-3 \\-3&2 \\\end{bmatrix}\):

$$\begin{aligned} \begin{array}{lll} \lambda &{} \chi _{\lambda } \\ \left( 1, 1\right) &{} 1 \\ \left( 2, 2\right) &{} -2 t + 1 \\ \left( 2, 3\right) &{} t^{2} - t + 2 \\ \left( 3, 2\right) &{} t^{2} - t + 2 \\ \left( 3, 3\right) &{} -2 t^{3} + 3 t^{2} - 4 t + 3 \\ \left( 3, 4\right) &{} t^{4} - 3 t^{3} + 6 t^{2} - 6 t + 4 \\ \left( 4, 3\right) &{} t^{4} - 3 t^{3} + 6 t^{2} - 6 t + 4 \\ \left( 4, 4\right) &{} -2 t^{5} + 7 t^{4} - 12 t^{3} + 17 t^{2} - 16 t + 6 \\ \left( 4, 5\right) &{} t^{6} - 5 t^{5} + 15 t^{4} - 26 t^{3} + 30 t^{2} - 23 t + 9 \\ \left( 4, 6\right) &{} t^{6} - 8 t^{5} + 19 t^{4} - 31 t^{3} + 36 t^{2} - 28 t + 9 \\ \left( 5, 4\right) &{} t^{6} - 5 t^{5} + 15 t^{4} - 26 t^{3} + 30 t^{2} - 23 t + 9 \\ \left( 5, 5\right) &{} -2 t^{7} + 9 t^{6} - 30 t^{5} + 58 t^{4} - 82 t^{3} + 77 t^{2} - 50 t + 16 \\ \left( 6, 4\right) &{} t^{6} - 8 t^{5} + 19 t^{4} - 31 t^{3} + 36 t^{2} - 28 t + 9 \\ \cdots &{} \cdots \\ \left( 10, 9\right) &{} t^{16} - 15 t^{15} + 135 t^{14} - 811 t^{13} + 3535 t^{12} - 11729 t^{11} + 30615 t^{10} - 64282 t^{9} + 110096 t^{8} - \\ &{}154852 t^{7} + 178868 t^{6} - 168420 t^{5} + 127110 t^{4} - 74539 t^{3} + 32094 t^{2} - 9070 t + 1267 \\ \end{array} \end{aligned}$$

For the Feingold–Frenkel rank 3 hyperbolic root system with Cartan matrix \(\begin{bmatrix}2&-2&0 \\ -2&2&-1 \\ 0&-1&2 \end{bmatrix}\):

$$\begin{aligned} \begin{array}{lll} \lambda &{} \chi _{\lambda } \\ \left( 1, 1, 0\right) &{}~~ 1 \\ \left( 2, 2, 0\right) &{}~~ 1 \\ \left( 2, 2, 1\right) &{}~~ 2 \\ \left( 3, 3, 0\right) &{}~~ 1 \\ \left( 3, 3, 1\right) &{}~~ -t + 3 \\ \left( 3, 4, 2\right) &{}~~ -2 t + 5 \\ \left( 4, 4, 0\right) &{}~~ 1 \\ \left( 4, 4, 1\right) &{}~~ -2 t + 5 \\ \left( 4, 4, 2\right) &{}~~ -t^{2} - 6 t + 7 \\ \left( 4, 5, 2\right) &{}~~ t^{3} + t^{2} - 9 t + 11 \\ \left( 5, 5, 0\right) &{}~~ 1 \\ \left( 5, 5, 1\right) &{}~~ -5 t + 7 \\ \left( 5, 5, 2\right) &{}~~ 2 t^{3} + 2 t^{2} - 17 t + 15 \\ \left( 5, 6, 2\right) &{}~~ -t^{4} + 3 t^{3} + 6 t^{2} - 26 t + 22 \\ \left( 5, 6, 3\right) &{}~~ -3 t^{4} + 6 t^{3} + 13 t^{2} - 43 t + 30 \\ \left( 6, 6, 0\right) &{}~~ 1 \\ \left( 6, 6, 1\right) &{}~~ t^{2} - 8 t + 11 \\ \left( 6, 6, 2\right) &{}~~ -2 t^{4} + 5 t^{3} + 11 t^{2} - 43 t + 30 \\ \left( 6, 6, 3\right) &{}~~ -6 t^{4} + 8 t^{3} + 23 t^{2} - 65 t + 42 \\ \left( 6, 7, 2\right) &{}~~ -5 t^{4} + 6 t^{3} + 22 t^{2} - 63 t + 42 \\ \left( 7, 7, 0\right) &{}~~ 1 \\ \left( 7, 7, 1\right) &{}~~ 2 t^{2} - 15 t + 15 \\ \end{array} \end{aligned}$$

Notice that the phenomenon of \(\chi _\lambda = 1\) for \(\lambda =(n, n, 0)\) is an instance of Proposition 7.1 and Theorem 4.2, as these are roots of the embedded affine root subsystem \(A_1^{(1)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthiah, D., Puskás, A. & Whitehead, I. Correction factors for Kac–Moody groups and t-deformed root multiplicities. Math. Z. 296, 127–145 (2020). https://doi.org/10.1007/s00209-019-02419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02419-1

Navigation