Skip to main content
Log in

Extremal for a k-Hessian inequality of Trudinger–Moser type

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider k-Hessian operators \(S_k[u]\) in bounded domains \(\varOmega \) in \(\mathbb R^N\) such that \(\partial \varOmega \) is \((k-1)\)-convex. For so-called k-admissible functions \(u \in \varPhi _0^k\) one has Sobolev type inequalities of the form

$$\begin{aligned} \Vert u\Vert _{L^p(\varOmega )} \le C\, \Vert u\Vert _{\varPhi _0^k} \end{aligned}$$

where \( \Vert u\Vert _{\varPhi _0^k}^{k+1} = \int _\varOmega (-u) S_k[u]dx\), and \(1 \le p \le k^* = \frac{N(k+1)}{N-2k}\). The case \(N = 2k\) is a borderline case of Trudinger–Moser type, and it was recently shown by Tian–Wang that a corresponding inequality of exponential type holds

$$\begin{aligned} \sup _{\Vert u\Vert _{\varPhi _0^k \le 1}} \int _\varOmega \left( \mathrm {e}^{\alpha |u|^{\frac{N+2}{N}}} -\sum _{j=0}^{k-1}\frac{\alpha ^{j} |u|^{j\frac{N+2}{N}}}{j!} \right) \mathrm {d}x \le C \end{aligned}$$

for \(\alpha \le \alpha _N = N\left[ \frac{\omega _{N-1}}{k} {N-1\atopwithdelims ()k-1}\right] ^{2/N}\). In this article we prove an analogue to the famous result of Carleson–Chang, namely that for \(\varOmega = B_R(0)\) the above supremum is attained also in the limiting case \(\alpha =\alpha _N\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  3. Caffarelli, L., Nirenberg, L., Spruck, J.: Dirichlet problem for nonlinear second order elliptic equations III. Functions of the eigenvalues of the Hessian. Acta Math. 155, 261–301 (1985)

    Article  MathSciNet  Google Scholar 

  4. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Chou, K.S., Geng, D., Yan, S.S.: Critical dimension of a Hessian equation involving critical exponent and a related asymptotic result. J. Differ. Equ. 129, 79–110 (1996)

    Article  MathSciNet  Google Scholar 

  6. Chou, K.S., Wang, X.-J.: Variational theory for Hessian equations. Commun. Pure Appl. Math. 54, 1029–1064 (2001)

    Article  MathSciNet  Google Scholar 

  7. Clément, P., de Figueiredo, D.G., Mitidieri, E.: Quasilinear elliptic equations with critical exponents. Topol. Methods Nonlinear Anal. 7, 133–170 (1996)

    Article  MathSciNet  Google Scholar 

  8. de Figueiredo, D.G., do Ó, J.M., Ruf, B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. 55, 135–152 (2002)

    Article  MathSciNet  Google Scholar 

  9. de Oliveira, J.F., do Ó, J.M.: Trudinger–Moser type inequalities for weighted Sobolev spaces involving fractional dimensions. Proc. Amer. Math. Soc. 142, 2813–2828 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Kufner, A., Opic, B.: Hardy-type Inequalities, Pitman Research Notes in Mathematics, vol. 219. Longman Scientific and Technical, Harlow (1990)

    MATH  Google Scholar 

  11. Labutin, D.: Potential estimates for a class of fully nonlinear elliptic equations. Duke Math. J. 111, 1–49 (2002)

    Article  MathSciNet  Google Scholar 

  12. Lions, P.L.: The concentration–compactness principle in the calculus of variations. The limit case, Part 1. Rev. Mat. Iberoam. 1, 145–201 (1985)

    Article  Google Scholar 

  13. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/1971)

  14. Sánchez, J.: Bounded solutions of a k-Hessian equation in a ball. J. Differ. Equ. 261, 797–820 (2016)

    Article  MathSciNet  Google Scholar 

  15. Sheng, W.M., Trudinger, N.S., Wang, X.-J.: The \(k\)-Yamabe problem. Surv. Differ. Geom. XVII, vol. 17, p. 427457 (2012)

  16. Tian, G.-T., Wang, X.-J.: Moser–Trudinger type inequalities for the Hessian equation. J. Funct. Anal. 259, 1974–2002 (2010)

    Article  MathSciNet  Google Scholar 

  17. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  18. Trudinger, N.S., Wang, X.-J.: Hessian measures I. Topol. Methods Nonlinear Anal. 10, 225–239 (1997)

    Article  MathSciNet  Google Scholar 

  19. Trudinger, N.S., Wang, X.-J.: Hessian measures II. Ann. Math. 150, 579–604 (1999)

    Article  MathSciNet  Google Scholar 

  20. Wang, X.-J.: A class of fully nonlinear elliptic equations and related functionals. Indiana Univ. Math. J. 43, 25–54 (1994)

    Article  MathSciNet  Google Scholar 

  21. Wang, X.-J.: The \(k\)-Hessian Equation, Lecture Notes in Mathematics, vol. 1977. Springer, Berlin (2009)

    Google Scholar 

  22. Wei, W.: Uniqueness theorems for negative radial solutions of k-Hessian equations in a ball. J. Differ. Equ. 261, 3756–3771 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wei, W.: Existence and multiplicity for negative solutions of k-Hessian equations. J. Differ. Equ. 263, 615–640 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ruf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by CAPES and INCTmat/MCT/Brazil, J. M. do Ó was partially supported by CNPq Grant 305726/2017-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, J.F., do Ó, J.M. & Ruf, B. Extremal for a k-Hessian inequality of Trudinger–Moser type. Math. Z. 295, 1683–1706 (2020). https://doi.org/10.1007/s00209-019-02410-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02410-w

Keywords

Mathematics Subject Classification

Navigation