A removability theorem for Sobolev functions and detour sets


We study the removability of compact sets for continuous Sobolev functions. In particular, we focus on sets with infinitely many complementary components, called “detour sets”, which resemble the Sierpiński gasket. The main theorem is that if \(K \subset \mathbb {R}^n\) is a detour set and its complementary components are sufficiently regular, then K is \(W^{1,p}\)-removable for \(p>n\). Several examples and constructions of sets where the theorem applies are given, including the Sierpiński gasket, Apollonian gaskets, and Julia sets.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009)

    Google Scholar 

  2. 2.

    Benedetto, J., Czaja, W.: Integration and modern analysis. Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, Boston, Inc., Boston, MA (2009)

  3. 3.

    Bishop, C.: Some homeomorphisms of the sphere conformal off a curve. Ann. Acad. Sci. Fenn. Ser. A I Math. 19(2), 323–338 (1994)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI (2001)

  5. 5.

    Devaney, R., Rocha, M., Siegmund, S.: Rational maps with generalized Sierpiński gasket Julia sets. Topol. Appl. 154(1), 11–27 (2007)

    Article  Google Scholar 

  6. 6.

    Gehring, F.W.: The \(L^p\)-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer Verlag, New York (2001)

    Google Scholar 

  8. 8.

    Jones, P.: On removable sets for Sobolev spaces in the plane. Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), 250–276, Princeton Math. Ser., vol. 42, Princeton Univ. Press, Princeton, NJ (1995)

  9. 9.

    Jones, P., Smirnov, S.: Removability theorems for Sobolev functions and quasiconformal maps. Ark. Mat. 38(2), 263–279 (2000)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kameyama, A.: Julia sets of postcritically finite rational maps and topological self-similar sets. Nonlinearity 13(1), 165–188 (2000)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kaufman, R.: Fourier-Stieltjes coefficients and continuation of functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 27–31 (1984)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Koskela, P.: Removable sets for Sobolev spaces. Ark. Mat. 37(2), 291–304 (1999)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Koskela, P., Nieminen, T.: Quasiconformal removability and the quasihyperbolic metric. Indiana Univ. Math. J. 54(1), 143–151 (2005)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Koskela, P., Rajala, T., Zhang, Y.: A density problem for Sobolev functions on Gromov hyperbolic domains. Nonlinear Anal. 154, 189–209 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Martio, O., Väisälä, J.: Quasihyperbolic geodesics in convex domains II. Pure Appl. Math. Q. 7(2), Special Issue: In honor of Frederick W. Gehring, Part 2, 395–409 (2011)

  16. 16.

    Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 324, Springer-Verlag, Berlin Heidelberg (2011)

  17. 17.

    Mihalache, N.: Julia and John revisited. Fund. Math. 215(1), 67–86 (2011)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Milnor, J.: Dynamics in one complex variable. Third edition, Annals of Mathematical Studies, vol. 160, Princeton University Press, Princeton (2006)

  19. 19.

    Newman, M.H.A.: Elements of the topology of plane sets of points, 2nd edn. Cambridge University Press, London (1964)

    Google Scholar 

  20. 20.

    Ntalampekos, D., Wu, J.-M.: Non-removability of Sierpiński spaces. Proc. Am. Math. Soc. (2019), to appear, https://doi.org/10.1090/proc/14698

  21. 21.

    Ntalampekos, D.: Non-removability of Sierpiński carpets, Indiana Univ. Math. J. (2019), to appear. Preprint arXiv:1809.05605

  22. 22.

    Ntalampekos, D.: Non-removability of the Sierpiński gasket. Invent. Math. 216(2), 519–595 (2019)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Sheffield, S.: Conformal weldings on random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44(5), 3474–3545 (2016)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Smith, W., Stegenga, D.: Hölder domains and Poincaré domains. Trans. Am. Math. Soc. 319(1), 67–100 (1990)

    MATH  Google Scholar 

  25. 25.

    Väisälä, J.: Lectures on \(n\)-dimensional quasiconformal mappings. In: Lecture Notes in Mathematics, vol. 229, Springer-Verlag, Berlin-New York (1971)

  26. 26.

    Whyburn, G.T.: Analytic Topology. In: American Mathematical Society Colloquium Publications, vol. 28, American Mathematical Society, New York (1942)

  27. 27.

    Younsi, M.: On removable sets for holomorphic functions. EMS Surv. Math. Sci. 2(2), 219–254 (2015)

    MathSciNet  Article  Google Scholar 

Download references


The author would like to thank Mario Bonk for introducing him to the problem of removability, and for several fruitful discussions and explanations on the background of the problem and the proofs of previous results. Additional thanks go to Huy Tran for pointing out the connection of the problem to SLE, to Ville Tengvall for pointing out the reference [14], and to Pekka Koskela for a motivating discussion. The author is also grateful to Vasiliki Evdoridou, Malik Younsi, and the anonymous referee for their comments and corrections. This paper was written while the author was visiting University of Helsinki. He thanks the faculty and staff of the Department of Mathematics at the University of Helsinki for their hospitality.

Author information



Corresponding author

Correspondence to Dimitrios Ntalampekos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by NSF grant DMS-1506099.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ntalampekos, D. A removability theorem for Sobolev functions and detour sets. Math. Z. 296, 41–72 (2020). https://doi.org/10.1007/s00209-019-02405-7

Download citation


  • Removability
  • Sobolev functions
  • Hölder domains
  • Detour sets
  • Sierpiński gasket

Mathematics Subject Classification

  • Primary 46E35
  • Secondary 30C65