A motivic homotopy theory without \(\mathbb {A}^{1}\)-invariance

Abstract

In this paper, we continue the program initiated by Kahn–Saito–Yamazaki by constructing and studying an unstable motivic homotopy category with modulus \(\overline{\mathbf{M}}\mathcal {H}(k)\), extending the Morel–Voevodsky construction from smooth schemes over a field k to certain diagrams of schemes. We present this category as a candidate environment for studying representability problems for non \(\mathbb {A}^1\)-invariant generalized cohomology theories.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    The paper [22] has been superseded by [21] during the revision of this manuscript. Since the latter is not yet available to the public, we have decided to keep the references to the obsolete version. To the best of our knowledge, the relevant parts will appear unchanged in [21] (but presumably with a different numbering).

References

  1. 1.

    Binda, F.: Motives and algebraic cycles with moduli conditions, PhD thesis, University of Duisburg-Essen (2016)

  2. 2.

    Binda, F.: A cycle class map from Chow groups with modulus to relative \(K\)-theory. Doc. Math., pp. 407–444 (2018)

  3. 3.

    Binda, F., Krishna, A.: Zero cycles with modulus and zero cycles on singular varieties. Compos. Math. 154, 120–187 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Binda, F., Park, D., Østvær, P.A.: Triangulated categories of logarithmic motives over a field (2019). In preparation

  5. 5.

    Binda, F., Rülling, K., Saito, S.: On the cohomology of reciprocity sheaves (2019). In preparation

  6. 6.

    Binda, F., Saito, S.: Relative cycles with moduli and regulator maps. J. Insti. Math. Jussieu pp. 1–61 (2018) (to appear)

  7. 7.

    Blander, B.A.: Local projective model structures on simplicial presheaves. k-Theory 24, 283–301 (2001)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bloch, S., Esnault, H.: The additive dilogarithm. Doc. Math., pp. 131–155 (2003). (electronic). Kazuya Kato’s fiftieth birthday

  9. 9.

    Bloch, S., Esnault, H.: An additive version of higher Chow groups. Ann. Sci. École Norm. Sup. (4) 36, 463–477 (2003)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cisinski, D.-C., Tabuada, G.: Symmetric monoidal structure on non-commutative motives. J. K-theory 9, 201–268 (2012)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Day, B.: On Closed Categories of Functors, in Reports of the Midwest Category Seminar, IV. Lecture Notes in Mathematics, vol. 137. Springer, Berlin (1970)

    Google Scholar 

  12. 12.

    Dundas, B.I., Röndigs, O., Østvær, P.A.: Motivic functors. Doc. Math. 8, 489–525 (2003). (electronic)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35. Springer, New York (1967)

    Book  Google Scholar 

  14. 14.

    Heller, A.: Homotopy theories. Mem. Am. Math. Soc., 71, vi+78 (1988)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Hirschhorn, P.S.: Model categories and their localizations, vol 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2003)

    Google Scholar 

  16. 16.

    Hovey, M.: Model categories, vol. 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1999)

    Google Scholar 

  17. 17.

    Im, G.B., Kelly, G.M.: A universal property of the convolution monoidal structure. J. Pure Appl. Algebra 43, 75–88 (1986)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Jardine, J.F.: Simplicial presheaves. J. Pure Appl. Algebra 47, 35–87 (1987)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Jardine, J.F.: Motivic symmetric spectra. Doc. Math. 5, 445–553 (2000). (electronic)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Jardine, J.F.: Local homotopy theory, Springer Monographs in Mathematics. Springer, New York (2015)

    Book  Google Scholar 

  21. 21.

    Kahn, B., Miyazaki, H., Saito, S., Yamazaki, T.: Motives with modulus I: Modulus sheaves with transfers (2019). (Preprint)

  22. 22.

    Kahn, B., Saito, S., Yamazaki, T.: Motives with modulus (2015). arXiv:1511.07124v1

  23. 23.

    Kahn, B., Saito, S., Yamazaki, T.: Reciprocity sheaves. Compos. Math. 152, 1851–1898 (2016). (With two appendices by Kay Rülling)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Krishna, A.: On 0-cycles with modulus. Algebra Number Theory 9, 2397–2415 (2015)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Krishna, A., Levine, M.: Additive higher Chow groups of schemes. J. Reine Angew. Math. 619, 75–140 (2008)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Krishna, A., Park, J.: Moving lemma for additive higher Chow groups. Algebra Number Theory 6, 293–326 (2012)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Krishna, A., Park, J.: Algebraic cycles and crystalline cohomology (2015). arXiv:1504.08181v4

  28. 28.

    Krishna, A., Park, J.: A module structure and a vanishing theorem for cycles with modulus. Math. Res. Lett. 24, 1147–1176 (2017)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Levine, M.: Smooth motives. Motives and Algebraic Cycles, vol. 56 of Fields Institute Communications, pp. 175–231. American Mathematical Society, Providence (2009)

    Google Scholar 

  30. 30.

    Morel, F., Voevodsky, V.: \({ A}^1\)-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math. 1999, 45–143 (2001)

    MATH  Google Scholar 

  31. 31.

    Rülling, K., Saito, S.: Higher Chow groups with modulus and relative Milnor K-theory. Transactions of the American Mathematical Society, pp. 987–1043 (2018). arXiv:1504.02669

  32. 32.

    Stacks Project Authors. Stacks Project (2016). http://stacks.math.columbia.edu

  33. 33.

    Thomason, R.W., Trobaugh, T.: Higher algebraic \(K\)-theory of schemes and of derived categories. In: The Grothendieck Festschrift, Vol. III, vol. 88 of Progress in Mathematics, Birkhäuser Boston, Boston, MA, pp. 247–435 (1990)

  34. 34.

    Voevodsky, V.: Homology of schemes. Selecta Math. (N.S.) 2, 111–153 (1996)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Voevodsky, V.: Homotopy theory of simplicial sheaves in completely decomposable topologies. J. Pure Appl. Algebra 214, 1384–1398 (2010)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Voevodsky, V.: Unstable motivic homotopy categories in Nisnevich and cdh-topologies. J. Pure Appl. Algebra 214, 1399–1406 (2010)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This paper is essentially based on the second chapter of my PhD thesis, written in Essen under the supervision of Marc Levine. It is a pleasure to thank him heartily for much advice, constant support and encouragement. I would also like to thank Moritz Kerz and Shuji Saito for valuable comments and many friendly conversations on these topics, as well as Lorenzo Mantovani and Mauro Porta for many remarks on a preliminary version of this paper. Finally, I’m grateful to the anonymous referee for the careful reading of the manuscript, and for suggesting many improvements in the exposition.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Federico Binda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the CRC SFB 1085 “Higher Invariants” (University of Regensburg) of the Deutsche Forschungsgemeinschaft during the preparation of the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Binda, F. A motivic homotopy theory without \(\mathbb {A}^{1}\)-invariance. Math. Z. 295, 1475–1519 (2020). https://doi.org/10.1007/s00209-019-02399-2

Download citation

Mathematics Subject Classification

  • Primary 14F42
  • Secondary 19E15