Skip to main content
Log in

Extension operators for smooth functions on compact subsets of the reals

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce sufficient as well as necessary conditions for a compact set K such that there is a continuous linear extension operator from the space of restrictions \(C^\infty (K)=\{F|_K: F\in C^\infty (\mathbb {R})\}\) to \(C^\infty (\mathbb {R})\). This allows us to deal with examples of the form \(K=\{a_n:n\in \mathbb {N}\}\cup \{0\}\) for \(a_n\rightarrow 0\) previously considered by Fefferman and Ricci as well as Vogt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bos, Len P., Milman, Pierre D.: Sobolev–Gagliardo–Nirenberg and Markov type inequalities on subanalytic domains. Geom. Funct. Anal. 5(6), 853–923 (1995)

    Article  MathSciNet  Google Scholar 

  2. Bierstone, Edward, Milman, Pierre D.: Geometric and differential properties of subanalytic sets. Ann. Math. (2) 147(3), 731–785 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bierstone, Edward, Milman, Pierre D., Pawłucki, Wiesław: Composite differentiable functions. Duke Math. J. 83(3), 607–620 (1996)

    Article  MathSciNet  Google Scholar 

  4. DeVore, Ronald A., Lorentz, George G.: Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303. Springer, Berlin (1993)

    Google Scholar 

  5. Fefferman, Charles: \(C^m\) extension by linear operators. Ann. Math. (2) 166(3), 779–835 (2007)

    Article  MathSciNet  Google Scholar 

  6. Frerick, Leonhard, Jordá, Enrique, Wengenroth, Jochen: Tame linear extension operators for smooth Whitney functions. J. Funct. Anal. 261(3), 591–603 (2011)

    Article  MathSciNet  Google Scholar 

  7. Frerick, Leonhard, Jordá, Enrique, Wengenroth, Jochen: Whitney extension operators without loss of derivatives. Rev. Mat. Iberoam. 32(2), 377–390 (2016)

    Article  MathSciNet  Google Scholar 

  8. Fefferman, Charles, Ricci, Fulvio: Some examples of \(C^\infty \) extension by linear operators. Rev. Mat. Iberoam. 28(1), 297–304 (2012)

    Article  MathSciNet  Google Scholar 

  9. Frerick, Leonhard: Extension operators for spaces of infinite differentiable Whitney jets. J. Reine Angew. Math. 602, 123–154 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Goncharov, Alexander: A compact set without Markov’s property but with an extension operator for \(C^\infty \)-functions. Studia Math. 119(1), 27–35 (1996)

    Article  MathSciNet  Google Scholar 

  11. Hörmander, Lars: The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer, Berlin, Distribution theory and Fourier analysis (1990)

  12. Malgrange, Bernard: Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, (1967)

  13. Merrien, Jean: Prolongateurs de fonctions différentiables d’une variable réelle. J. Math. Pures Appl. (9) 45, 291–309 (1966)

    MathSciNet  MATH  Google Scholar 

  14. Mitjagin, B.S.: Approximate dimension and bases in nuclear spaces. Uspehi Mat. Nauk 16(4 (100)), 63–132 (1961)

    MathSciNet  Google Scholar 

  15. Meise, Reinhold, Vogt, Dietmar: Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (1997). Translated from the German by M. S. Ramanujan and revised by the authors

    Google Scholar 

  16. Pawłucki, Wiesław: On the algebra of functions \(\mathscr {C}^k\)-extendable for each \(k\) finite. Proc. Am. Math. Soc. 133(2), 481–484 (2005). (Electronic)

    Article  Google Scholar 

  17. Pawłucki, Wiesław, Pleśniak, Wiesław: Extension of \(C^\infty \) functions from sets with polynomial cusps. Studia Math. 88(3), 279–287 (1988)

    Article  MathSciNet  Google Scholar 

  18. Stein, Elias M.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  19. Tidten, Michael: Fortsetzungen von \(C^{\infty }\)-Funktionen, welche auf einer abgeschlossenen Menge in \({ R}^{n}\) definiert sind. Manuscripta Math. 27(3), 291–312 (1979)

    Article  MathSciNet  Google Scholar 

  20. Vogt, Dietmar: Restriction spaces of \(A^\infty \). Rev. Mat. Iberoam. 30(1), 65–78 (2014)

    Article  MathSciNet  Google Scholar 

  21. Vogt, Dietmar, Wagner, Max Josef: Charakterisierung der Quotientenräume von \(s\) und eine Vermutung von Martineau. Studia Math. 67(3), 225–240 (1980)

    Article  MathSciNet  Google Scholar 

  22. Wengenroth, Jochen: Derived functors in functional analysis. Lecture Notes in Mathematics, vol. 1810. Springer, Berlin (2003)

    Book  Google Scholar 

  23. Whitney, Hassler: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)

    Article  MathSciNet  Google Scholar 

  24. Whitney, Hassler: On ideals of differentiable functions. Am. J. Math. 70, 635–658 (1948)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of all authors was partially supported by GVA AICO/2016/054 . The research of the second author was partially supported by the project MTM2016-76647-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Jordá.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frerick, L., Jordá, E. & Wengenroth, J. Extension operators for smooth functions on compact subsets of the reals. Math. Z. 295, 1537–1552 (2020). https://doi.org/10.1007/s00209-019-02388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02388-5

Keywords

Mathematics Subject Classification

Navigation