Abstract
This paper is a continuation of Kim et al. (J Inst Math Jussieu, 2018). We supplement four results on a family of holomorphic Siegel cusp forms for \(GSp_4/\mathbb {Q}\). First, we improve the result on Hecke fields. Namely, we prove that the degree of Hecke fields is unbounded on the subspace of genuine forms which do not come from functorial lift of smaller subgroups of \(GSp_4\). Second, we prove simultaneous vertical Sato–Tate theorem. Namely, we prove simultaneous equidistribution of Hecke eigenvalues at finitely many primes. Third, we compute the n-level density of degree 4 spinor L-functions, and thus we can distinguish the symmetry type depending on the root numbers. This is conditional on certain conjecture on root numbers. Fourth, we consider equidistribution of paramodular forms. In this case, we can prove the conjecture on root numbers. Main tools are the equidistribution theorem in our previous work and Shin–Templier’s (Compos Math 150(12):2003–2053, 2014) work.
Similar content being viewed by others
References
Bushnell, C.J., Henniart, G., Kutzko, P.: Local Rankin–Selberg convolutions for \({\rm GL}_n\): explicit conductor formula. J. Am. Math. Soc. 11(3), 703–730 (1998)
Calegari, F., Gee, T.: Irreducibility of automorphic Galois representations. Annales de l’Institut Fourier 63(5), 1881–1912 (2013)
Cho, P.J., Kim, H.H.: \(n\)-level densities of Artin \(L\)-functions. IMRN 2015, 7861–7883 (2015)
Cohen, H., Diaz, F., Diaz, Y., Olivier, M.: Enumerating quartic dihedral extensions of \({\mathbb{Q}}\). Comput. Math 133, 65–93 (2002)
Emerton, M.: A local-global compatibility conjecture in the \(p\)-adic Langlands programme for \(GL_2/{\mathbb{Q}}\). Pure Appl. Math. Q. 2(2), 279–393 (2006) (Special Issue: In honor of John H. Coates. Part 2)
Gan, W.-T., Takeda, S.: The local Langlands conjecture for \(GSp(4)\). Ann. Math. (2) 173(3), 1841–1882 (2011)
Gee, T., Taïbi, O.: Arthur’s multiplicity formula for \(GSp_4\) and restriction to \(Sp_4\). arXiv:1807.03988
Harris, M., Soudry, D., Taylor, R.: \(l\)-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to \(GSp_4({\mathbb{Q}})\). Invent. Math. 112(2), 377–411 (1993)
Ibukiyama, T., Kitayama, H.: Dimensional formulas of paramodular forms of squarefree level and comparison with inner twist. J. Math. Soc. Japan 69, 597–671 (2017)
Jorza, A.: Galois representations for holomorphic Siegel modular forms. Math. Ann. 355, 381–400 (2013)
Katz, N., Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy. American Mathematical Society Colloquium Publications, vol. 45. American Mathematical Society, Providence, RI (1999)
Kim, H.: An Application of Exterior Square Functoriality of \(GL_4\); Asai Lift, Number theory, CRM Proc. Lecture Notes, vol. 36, pp. 197–202. Amer. Math. Soc., Providence (2004)
Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. I. Invent. Math. 178(3), 485–504 (2009)
Kisin, M.: The Fontaine–Mazur conjecture for \(GL_2\). J. Am. Math. Soc. 22(3), 641–690 (2009)
Kim, H.-H., Shahidi, F.: Functorial products for \(GL_2\times GL_3\) and the symmetric cube for \(GL_2\). With an appendix by Colin J. Bushnell and Guy Henniart. Ann. Math (2) 155(3), 837–893 (2002)
Kim, H.H., Wakatsuki, S., Yamauchi, T.: An equidistribution theorem for holomorphic siegel modular forms for GSP4 and its applications. J. Inst. Math. Jussieu (2018). https://doi.org/10.1017/S147474801800004X
Kim, H.H., Wakatsuki, S., Yamauchi, T.: Equidistribution theorems of holomorphic Siegel cusp forms of general degree (in preparation)
Kret, A., Shin, S.W.: Galois representations for general symplectic groups (2016). arXiv:1609.04223
Lapid, E.: On the root number of representations of orthogonal type. Comput. Math. 140(2), 274–286 (2004)
Laumon, G.: Sur la cohomologie a supports compacts des varietes de Shimura pour \(GSp(4)_{\mathbb{Q}}\). Comput. Math. 105(3), 267–359 (1997)
Laumon, G.: Fonctions zetas des varietes de Siegel de dimension trois, Formes automorphes. II. Le cas du groupe GSp(4). Astérisque 302, 1–66 (2005)
Liu, T., Yu, J.-K.: On automorphy of certain Galois representations of \(GO_4\)-type. With an appendix by Liang Xiao. J. Number Theory 161, 49–74 (2016)
Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33–186 (1977)
Murty, R., Sinha, K.: Effective equidistribution of eigenvalues of Hecke operators. J. Number Theory 129(3), 681–714 (2009)
Roberts, B., Schmidt, R.: Local Newforms for \(GSp(4)\). Lecture Notes in Mathematics, vol. 1918. Springer, Berlin (2007)
Royer, E.: Facteurs \({\mathbb{Q}}\)-simples de \(J_0(N)\) de grande dimension et de grand rang. Bull. Soc. Math. France 128(2), 219–248 (2000)
Rubinstein, M.: Low-lying zeros of \(L\)-functions and random matrix theory. Duke Math. J. 109(1), 147–181 (2001)
Schmidt, R.: Iwahori-spherical representations of GSp(2) and Siegel modular forms of degree 2 with square-free level. J. Math. Soc. Japan 57, 259–293 (2005)
Schmidt, R.: On classical Saito–Kurokawa liftings. J. Reine Angew. Math. 604, 211–236 (2007)
Schmidt, R.: Archimedean aspects of Siegel modular forms of degree 2. Rocky Mountain J. Math. 47(7), 2381–2422 (2017)
Schmidt, R.: Packet structure and paramodular forms. Trans. Am. Math. Soc. 370(5), 3085–3112 (2018)
Serre, J.-P.: Répartition asymptotique des valeurs propres de l’opérateur de Hecke \(T_p\). J. Am. Math. Soc 10(1), 75–102 (1997)
Shimizu, H.: On discontinuous groups operating on the product of the upper half planes. Ann. Math (2) 77, 33–71 (1963)
Shimura, G.: Class fields over real quadratic fields and Hecke operators. Ann. Math. (2) 95, 130–190 (1972)
Shin, S.W., Templier, N.: Sato–Tate theorem for families and low-lying zeros of automorphic \(L\)-functions. Invent. Math. 203(1), 1–177 (2016)
Shin, S.W., Templier, N.: On fields of rationality for automorphic representations. Compos. Math. 150(12), 2003–2053 (2014)
Sorensen, C.M.: Galois representations attached to Hilbert–Siegel modular forms. Doc. Math. 15, 623–670 (2010)
Taylor, R.: On congruences of modular forms. Thesis (1988)
Wakatsuki, S.: Multiplicity formulas for discrete series representations in \(L^2(\Gamma \backslash {\rm Sp}(2,{\mathbb{R}}))\). J. Number Theory 133, 3394–3425 (2013)
Weissauer, R.: Existence of Whittaker Models Related to Four Dimensional Symplectic Galois Representations, Modular Forms on Schiermonnikoog, pp. 285–310. Cambridge Univ. Press, Cambridge (2008)
Weissauer, R.: Endoscopy for \(GSp(4)\) and the cohomology of Siegel modular threefolds. Lecture Notes in Mathematics, vol. 1968. Springer, Berlin (2009)
Yamauchi, T.: On \({\mathbb{Q}}\)-simple factors of Jacobian varieties of modular curves. Yokohama Math. J. 53(2), 149–160 (2007)
Acknowledgements
We would like to thank K. Morimoto, R. Schmidt and S-W. Shin for helpful discussions. We thank the referee and P. Michel for their help.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Henry H. Kim is partially supported by NSERC #482564. Satoshi Wakatsuki is partially supported by JSPS Grant-in-Aid for Scientific Research (Nos. 26800006, 25247001, 15K04795). Takuya Yamauchi is partially supported by JSPS Grant-in-Aid for Scientific Research (C) No. 15K04787.
Rights and permissions
About this article
Cite this article
Kim, H.H., Wakatsuki, S. & Yamauchi, T. Equidistribution theorems for holomorphic Siegel modular forms for \(GSp_4\); Hecke fields and n-level density. Math. Z. 295, 917–943 (2020). https://doi.org/10.1007/s00209-019-02378-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-019-02378-7