Abstract
We classify all compactly generated t-structures in the unbounded derived category of an arbitrary commutative ring, generalizing the result of Alonso Tarrío et al. (J Algebra 324(3):313–346, 2010) for noetherian rings. More specifically, we establish a bijective correspondence between the compactly generated t-structures and infinite filtrations of the Zariski spectrum by Thomason subsets. Moreover, we show that in the case of a commutative noetherian ring, any bounded below homotopically smashing t-structure is compactly generated. As a consequence, all cosilting complexes are classified up to equivalence.
Similar content being viewed by others
Notes
These also appear under the name “weight structures” in the literature.
Also known as the “stable Koszul complex” in the literature.
The author is grateful to Rosanna Laking for pointing out the unnecessity of this condition in the definition of a cosilting object to him.
References
Alonso Tarrío, L., López Jeremías, A., Saorín, M.: Compactly generated t-structures on the derived category of a noetherian ring. J. Algebra 324(3), 313–346 (2010)
Alonso Tarrío, L., López Jeremías, A., Souto Salorio, M.J.: Construction of t-structures and equivalences of derived categories. Trans. Am. Math. Soc. 355(6), 2523–2543 (2003)
Anderson, F.W., Fuller, K.R.: Rings and categories of modules, vol. 13. Springer Science & Business Media, New York (2012)
Angeleri Hügel, L., Hrbek, M.: Silting modules over commutative rings. Int. Math. Res. Not. 2017(13), 4131–4151 (2016)
Angeleri Hügel, L., Marks, F., Vitória, J.: Silting modules. Int. Math. Res. Not. 2016(4), 1251–1284 (2015)
Angeleri Hügel, L., Marks, F., Vitória, J.: Torsion pairs in silting theory. Pac. J. Math. 291(2), 257–278 (2017)
Angeleri Hügel, L., Pospíšil, D., Šťovíček, J., Trlifaj, J.: Tilting, cotilting, and spectra of commutative noetherian rings. Trans. Am. Math. Soc. 366(7), 3487–3517 (2014)
Balmer, P., Favi, G.: Generalized tensor idempotents and the telescope conjecture. Proc. Lond. Math. Soc. 102(6), 1161–1185 (2011)
Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque, vol. 100, pp. 5–171. Soc. Math. France, Paris (1982)
Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compositio Mathematica 86(2), 209–234 (1993)
Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1993)
Dwyer, W.G., Greenlees, J.P.C.: Complete modules and torsion modules. Am. J. Math. 124(1), 199–220 (2002)
Garkusha, G., Prest, M.: Torsion classes of finite type and spectra. In: Cortiñas, G., Cuntz, J., Karoubi, M., Nest, R., Weibel, C.A. (eds.) K-Theory and Noncommutative Geometry, pp. 393–412. European Mathematical Society (2008)
Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules: Volume 1—Approximations/Volume 2—Predictions, vol. 41. Walter de Gruyter (2012)
Greenlees, J.P.C.: First steps in brave new commutative algebra. In: Interactions Between Homotopy Theory and Algebra, Contemporary Mathematics, vol. 436, pp. 239–275. American Mathematical Society, Providence, RI (2007)
Hopkins, M.J.: Global methods in homotopy theory. In: Proceedings of the 1985 LMS Symposium on Homotopy Theory, pp. 73–96 (1987)
Hrbek, M., Šťovíček, J.: Tilting classes over commutative rings. arXiv preprint arXiv:1701.05534 (2017)
Kashiwara, M., Schapira, P.: Categories and sheaves, vol. 332. Springer Science & Business Media, New York (2005)
Keller, B.: A remark on the generalized smashing conjecture. Manuscripta Mathematica 84(1), 193–198 (1994)
Keller, B., Nicolás, P.: Weight structures and simple dg modules for positive dg algebras. Int. Math. Res. Not. 5, 1028–1078 (2013)
Kiessling, J.: Properties of cellular classes of chain complexes. Isr. J. Math. 191(1), 483–505 (2012)
Kock, J., Pitsch, W.: Hochster duality in derived categories and point-free reconstruction of schemes. Trans. Am. Math. Soc. 369(1), 223–261 (2017)
Krause, H., Šťovíček, J.: The telescope conjecture for hereditary rings via Ext-orthogonal pairs. Adv. Math. 225(5), 2341–2364 (2010)
Laking, R.: Purity in compactly generated derivators and t-structures with Grothendieck hearts. arXiv preprint arXiv:1804.01326 (2018)
Lazard, D.: Autour de la platitude. Bull. Soc. Math. Fr. 97, 81–128 (1969)
Marks, F., Vitória, J.: Silting and cosilting classes in derived categories. J. Algebra 501, 526–544 (2018)
Matlis, E.: Injective modules over noetherian rings. Pac. J. Math. 8(3), 511–528 (1958)
Murfet, D.: Derived categories part I. http://therisingsea.org/notes/DerivedCategories.pdf (2006)
Neeman, A.: Oddball Bousfield classes. Topology 39(5), 931–935 (2000)
Neeman, A., Bökstedt, M.: The chromatic tower for D(R). Topology 31(3), 519–532 (1992)
Nicolás, P., Saorín, M., Zvonareva, A.: Silting theory in triangulated categories with coproducts. J. Pure Appl. Algebra (2018). https://doi.org/10.1016/j.jpaa.2018.07.016
Northcott, D.G.: Lessons on rings, modules and multiplicities. Cambridge University Press (1968). https://doi.org/10.1017/CBO9780511565922
Positselski, L.: Dedualizing complexes and MGM duality. J. Pure Appl. Algebra 220(12), 3866–3909 (2016)
Psaroudakis, C., Vitória, J.: Realisation functors in tilting theory. Mathematische Zeitschrift 288(3–4), 965–1028 (2018)
Rouquier, R.: Dimensions of triangulated categories. J. K-theory 1(2), 193–256 (2008)
Saorín, M., Šťovíček, J., Virili, S.: t-structures on stable derivators and Grothendieck hearts. arXiv preprint arXiv:1708.07540 (2017)
Stacks Project Authors, T.: Stacks Project. http://stacks.math.columbia.edu (2018)
Šťovíček, J.: Derived equivalences induced by big cotilting modules. Adv. Math. 263, 45–87 (2014)
Šťovíček, J., Pospíšil, D.: On compactly generated torsion pairs and the classification of co-t-structures for commutative noetherian rings. Trans. Am. Math. Soc. 368(9), 6325–6361 (2016)
Thomason, R.W.: The classification of triangulated subcategories. Compositio Mathematica 105(1), 1–27 (1997)
Zhang, P., Wei, J.: Cosilting complexes and AIR-cotilting modules. J. Algebra 491, 1–31 (2017)
Acknowledgements
M. Hrbek was supported by the Czech Academy of Sciences Programme for research and mobility support of starting researchers, Project MSM100191801. The paper was written during the author’s stay at Dipartimento di Matematica of Università degli Studi di Padova. I would like to express my gratitude to everybody at the department—and to Prof. Silvana Bazzoni in particular—for all the hospitality, and all the stimulating discussions. Also, I am indebted to Jan Šťovíček for spotting an error in an earlier version of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hrbek, M. Compactly generated t-structures in the derived category of a commutative ring. Math. Z. 295, 47–72 (2020). https://doi.org/10.1007/s00209-019-02349-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-019-02349-y