Skip to main content
Log in

Compactly generated t-structures in the derived category of a commutative ring

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We classify all compactly generated t-structures in the unbounded derived category of an arbitrary commutative ring, generalizing the result of Alonso Tarrío et al. (J Algebra 324(3):313–346, 2010) for noetherian rings. More specifically, we establish a bijective correspondence between the compactly generated t-structures and infinite filtrations of the Zariski spectrum by Thomason subsets. Moreover, we show that in the case of a commutative noetherian ring, any bounded below homotopically smashing t-structure is compactly generated. As a consequence, all cosilting complexes are classified up to equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These also appear under the name “weight structures” in the literature.

  2. Also known as the “stable Koszul complex” in the literature.

  3. The author is grateful to Rosanna Laking for pointing out the unnecessity of this condition in the definition of a cosilting object to him.

References

  1. Alonso Tarrío, L., López Jeremías, A., Saorín, M.: Compactly generated t-structures on the derived category of a noetherian ring. J. Algebra 324(3), 313–346 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alonso Tarrío, L., López Jeremías, A., Souto Salorio, M.J.: Construction of t-structures and equivalences of derived categories. Trans. Am. Math. Soc. 355(6), 2523–2543 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, F.W., Fuller, K.R.: Rings and categories of modules, vol. 13. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  4. Angeleri Hügel, L., Hrbek, M.: Silting modules over commutative rings. Int. Math. Res. Not. 2017(13), 4131–4151 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Angeleri Hügel, L., Marks, F., Vitória, J.: Silting modules. Int. Math. Res. Not. 2016(4), 1251–1284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Angeleri Hügel, L., Marks, F., Vitória, J.: Torsion pairs in silting theory. Pac. J. Math. 291(2), 257–278 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Angeleri Hügel, L., Pospíšil, D., Šťovíček, J., Trlifaj, J.: Tilting, cotilting, and spectra of commutative noetherian rings. Trans. Am. Math. Soc. 366(7), 3487–3517 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balmer, P., Favi, G.: Generalized tensor idempotents and the telescope conjecture. Proc. Lond. Math. Soc. 102(6), 1161–1185 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque, vol. 100, pp. 5–171. Soc. Math. France, Paris (1982)

  10. Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compositio Mathematica 86(2), 209–234 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  12. Dwyer, W.G., Greenlees, J.P.C.: Complete modules and torsion modules. Am. J. Math. 124(1), 199–220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garkusha, G., Prest, M.: Torsion classes of finite type and spectra. In: Cortiñas, G., Cuntz, J., Karoubi, M., Nest, R., Weibel, C.A. (eds.) K-Theory and Noncommutative Geometry, pp. 393–412. European Mathematical Society (2008)

  14. Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules: Volume 1—Approximations/Volume 2—Predictions, vol. 41. Walter de Gruyter (2012)

  15. Greenlees, J.P.C.: First steps in brave new commutative algebra. In: Interactions Between Homotopy Theory and Algebra, Contemporary Mathematics, vol. 436, pp. 239–275. American Mathematical Society, Providence, RI (2007)

  16. Hopkins, M.J.: Global methods in homotopy theory. In: Proceedings of the 1985 LMS Symposium on Homotopy Theory, pp. 73–96 (1987)

  17. Hrbek, M., Šťovíček, J.: Tilting classes over commutative rings. arXiv preprint arXiv:1701.05534 (2017)

  18. Kashiwara, M., Schapira, P.: Categories and sheaves, vol. 332. Springer Science & Business Media, New York (2005)

    MATH  Google Scholar 

  19. Keller, B.: A remark on the generalized smashing conjecture. Manuscripta Mathematica 84(1), 193–198 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Keller, B., Nicolás, P.: Weight structures and simple dg modules for positive dg algebras. Int. Math. Res. Not. 5, 1028–1078 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kiessling, J.: Properties of cellular classes of chain complexes. Isr. J. Math. 191(1), 483–505 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kock, J., Pitsch, W.: Hochster duality in derived categories and point-free reconstruction of schemes. Trans. Am. Math. Soc. 369(1), 223–261 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krause, H., Šťovíček, J.: The telescope conjecture for hereditary rings via Ext-orthogonal pairs. Adv. Math. 225(5), 2341–2364 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laking, R.: Purity in compactly generated derivators and t-structures with Grothendieck hearts. arXiv preprint arXiv:1804.01326 (2018)

  25. Lazard, D.: Autour de la platitude. Bull. Soc. Math. Fr. 97, 81–128 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marks, F., Vitória, J.: Silting and cosilting classes in derived categories. J. Algebra 501, 526–544 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Matlis, E.: Injective modules over noetherian rings. Pac. J. Math. 8(3), 511–528 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murfet, D.: Derived categories part I. http://therisingsea.org/notes/DerivedCategories.pdf (2006)

  29. Neeman, A.: Oddball Bousfield classes. Topology 39(5), 931–935 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Neeman, A., Bökstedt, M.: The chromatic tower for D(R). Topology 31(3), 519–532 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nicolás, P., Saorín, M., Zvonareva, A.: Silting theory in triangulated categories with coproducts. J. Pure Appl. Algebra (2018). https://doi.org/10.1016/j.jpaa.2018.07.016

    Article  MATH  Google Scholar 

  32. Northcott, D.G.: Lessons on rings, modules and multiplicities. Cambridge University Press (1968). https://doi.org/10.1017/CBO9780511565922

  33. Positselski, L.: Dedualizing complexes and MGM duality. J. Pure Appl. Algebra 220(12), 3866–3909 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Psaroudakis, C., Vitória, J.: Realisation functors in tilting theory. Mathematische Zeitschrift 288(3–4), 965–1028 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rouquier, R.: Dimensions of triangulated categories. J. K-theory 1(2), 193–256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saorín, M., Šťovíček, J., Virili, S.: t-structures on stable derivators and Grothendieck hearts. arXiv preprint arXiv:1708.07540 (2017)

  37. Stacks Project Authors, T.: Stacks Project. http://stacks.math.columbia.edu (2018)

  38. Šťovíček, J.: Derived equivalences induced by big cotilting modules. Adv. Math. 263, 45–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Šťovíček, J., Pospíšil, D.: On compactly generated torsion pairs and the classification of co-t-structures for commutative noetherian rings. Trans. Am. Math. Soc. 368(9), 6325–6361 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Thomason, R.W.: The classification of triangulated subcategories. Compositio Mathematica 105(1), 1–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, P., Wei, J.: Cosilting complexes and AIR-cotilting modules. J. Algebra 491, 1–31 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. Hrbek was supported by the Czech Academy of Sciences Programme for research and mobility support of starting researchers, Project MSM100191801. The paper was written during the author’s stay at Dipartimento di Matematica of Università degli Studi di Padova. I would like to express my gratitude to everybody at the department—and to Prof. Silvana Bazzoni in particular—for all the hospitality, and all the stimulating discussions. Also, I am indebted to Jan Šťovíček for spotting an error in an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Hrbek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrbek, M. Compactly generated t-structures in the derived category of a commutative ring. Math. Z. 295, 47–72 (2020). https://doi.org/10.1007/s00209-019-02349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02349-y

Keywords

Mathematics Subject Classification

Navigation