Skip to main content
Log in

On logarithmic bounds of maximal sparse operators

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given sparse collections of measurable sets \(\mathcal {S}_k\), \(k=1,2,\ldots ,N\), in a general measure space \((X,\mathfrak {M},\mu )\), let \( \Lambda _{\mathcal {S}_k}\) be the sparse operator, corresponding to \(\mathcal {S}_k\). We show that the maximal sparse function \( \Lambda f = \max _{1\le k\le N} \Lambda _{\mathcal {S}_k} f \) satisfies

$$\begin{aligned}&\Vert \Lambda \Vert _{L^p(X) \mapsto L^{p,\infty }(X)} \lesssim \log N\cdot \Vert M_{\mathcal {S}}\Vert _{L^p(X) \mapsto L^{p,\infty }(X)},\,1\le p<\infty , \\&||\Lambda ||_{L^p(X) \mapsto L^p(X)} \lesssim (\log N)^{\max \{1,1/(p-1)\}}\cdot \Vert M_{\mathcal {S}}\Vert _{L^p(X) \mapsto L^p(X)},\, 1<p<\infty , \end{aligned}$$

where \(M_{\mathcal {S}}\) is the maximal function corresponding to the collection of sets \(\mathcal {S}=\cup _k\mathcal {S}_k\). As a consequence, one can derive norm bounds for maximal functions formed from taking measurable selections of one-dimensional Calderón–Zygmund operators in the plane. Prior results of this type had a fixed choice of Calderón–Zygmund operator for each direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bernicot, F., Frey, D., Petermichl, S.: Sharp weighted norm estimates beyond Calderón-Zygmund theory. Anal. PDE 9(5), 1079–1113 (2016)

    Article  MathSciNet  Google Scholar 

  2. Conde-Alonso, J.M., Rey, G.: A pointwise estimate for positive dyadic shifts and some applications. Math. Ann. 365(3–4), 1111–1135 (2016)

    Article  MathSciNet  Google Scholar 

  3. Conde-Alonso, J.M., Culiuc, A., Di Plinio, F., Ou, Y.: A sparse domination principle for rough singular integrals. ArXiv e-prints(December 2016), available at 1612.09201

  4. Culiuc, A., Di Plinio, F., Ou, Y.: Domination of multilinear singular integrals by positive sparse forms. ArXiv e-prints(March 2016), available at 1603.05317

  5. de França Silva, F.C., Zorin-Kranich, P.: Sparse domination of sharp variational truncations. ArXiv e-prints(April 2016), available at 1604.05506

  6. Demeter, C.: Singular integrals along \(n\)directions in \(\mathbb{R}^2\). Proc. Am. Math. Soc 138(12), 4433–4442 (2010)

    Article  Google Scholar 

  7. Demeter, C., Di Plinio, F.: Logarithmic \(L^p\) bounds for maximal directional singular integrals in the plane. J. Geom. Anal. 24(1), 375–416 (2014)

    Article  MathSciNet  Google Scholar 

  8. Di Plinio, F., Guo, S., Thiele, C., Zorin-Kranich, P.: Square functions for bi-Lipschitz maps and directional operators. ArXiv e-prints (June 2017), available at 1706.07111

  9. Di Plinio, F., Parissis, I.: A sharp estimate for the Hilbert transform along finite order lacunary sets of directions. ArXiv e-prints(April 2017), available at 1704.02918

  10. Karagulyan, G.A.: An abstract theory of singular operators. ArXiv e-prints(November 2016), available at 1611.03808

  11. Karagulyan, G.A.: On unboundedness of maximal operators for directional Hilbert transforms. Proc. Am. Math. Soc 135(10), 3133–3141 (2007)

    Article  MathSciNet  Google Scholar 

  12. Katz, N.H.: Maximal operators over arbitrary sets of directions. Duke Math. J. 97(1), 67–79 (1999)

    Article  MathSciNet  Google Scholar 

  13. Katz, N.H.: Remarks on maximal operators over arbitrary sets of directions. Bull. Lond. Math. Soc. 31(6), 700–710 (1999)

    Article  MathSciNet  Google Scholar 

  14. Lacey, M.T.: An elementary proof of the \(A_2\) bound. Israel J. Math. 217(1), 181–195 (2017)

    Article  MathSciNet  Google Scholar 

  15. Lerner, A.K.: Intuitive dyadic calculus: the basics. ArXiv e-prints(August 2015), available at 1508

  16. Nagel, A., Stein, E.M., Wainger, S.: Differentiation in lacunary directions. Proc. Nat. Acad. Sci. U.S.A. 75(3), 1060–1062 (1978)

    Article  MathSciNet  Google Scholar 

  17. Parcet, J., Rogers, K.M.: Differentiation of integrals in higher dimensions. Proc. Natl. Acad. Sci. U. S. A. 110(13), 4941–4944 (2013)

    Article  MathSciNet  Google Scholar 

  18. Parcet, J., Rogers, K.M.: Directional maximal operators and lacunarity in higher dimensions. Am. J. Math. 137(6), 1535–1557 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Lacey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was partially supported by a grant from the Simons Foundation. Part of this research was carried out at the American Institute of Mathematics, during a workshop on ‘Sparse Domination of Singular Integrals’, October 2017.

Research supported in part by grant from the US National Science Foundation, DMS-1600693 and the Australian Research Council ARC DP160100153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagulyan, G.A., Lacey, M.T. On logarithmic bounds of maximal sparse operators. Math. Z. 294, 1271–1281 (2020). https://doi.org/10.1007/s00209-019-02314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02314-9

Keywords

Mathematics Subject Classification

Navigation