Abstract
A sharp \(L^p\) spectral multiplier theorem of Mihlin–Hörmander type is proved for a distinguished sub-Laplacian on quaternionic spheres. This is the first such result on compact sub-Riemannian manifolds where the horizontal space has corank greater than one. The proof hinges on the analysis of the quaternionic spherical harmonic decomposition, of which we present an elementary derivation.
Similar content being viewed by others
References
Agrachev, A., Boscain, U., Gauthier, J.-P., Rossi, F.: The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256(8), 2621–2655 (2009)
Ahrens, J.: Spectral Decomposition of a Distinct Sub-Laplacian on the Quaternionic Sphere. Christian-Albrechts-Universität zu Kiel, Masterarbeit (2016)
Astengo, F., Cowling, M., Di Blasio, B.: The Cayley transform and uniformly bounded representations. J. Funct. Anal. 213(2), 241–269 (2004)
Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, second ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York (2001)
Baudoin, F., Wang, J.: The subelliptic heat kernels of the quaternionic Hopf fibration. Potential Anal. 41(3), 959–982 (2014)
Bellaïche, A.: The tangent space in sub-Riemannian geometry, In: Bellaïche, A., Risler, J.-J. (eds.) Sub-Riemannian Geometry, Progr. Math., vol. 144, Birkhäuser, Basel, pp. 1–78 (1996)
Biquard, O.: Quaternionic contact structures, In: Marchiafava, S., Piccinni, P., Pontecorvo, M. (eds) Quaternionic structures in mathematics and physics (Rome, 1999), Univ. Studi Roma “La Sapienza”, Rome, pp. 23–30 (1999)
Casarino, V., Ciatti, P.: \(L^p\) joint eigenfunction bounds on quaternionic spheres. J. Fourier Anal. Appl. 23(4), 886–918 (2017)
Casarino, V., Cowling, M.G., Martini, A., Sikora, A.: Spectral multipliers for the Kohn Laplacian on forms on the sphere in \({\mathbb{C}}^n\). J. Geom. Anal. 27(4), 3302–3338 (2017)
Cowling, M.G., Martini, A.: Sub-Finsler geometry and finite propagation speed, In: Picardello, M.A. (ed.) Trends in Harmonic Analysis, Springer INdAM Series, vol. 3, pp. 147–205. Springer, Milan (2013)
Cowling, M.G., Sikora, A.: A spectral multiplier theorem for a sublaplacian on \(\text{ SU(2) }\). Math. Z. 238(1), 1–36 (2001)
Cowling, M.G., Klima, O., Sikora, A.: Spectral multipliers for the Kohn sublaplacian on the sphere in \(\mathbb{C}^n\). Trans. Amer. Math. Soc. 363(2), 611–631 (2011)
Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443–485 (2002)
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. I. Robert E. Krieger Publishing Co. Inc., Melbourne, Fla (1981)
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. II. Robert E. Krieger Publishing Co. Inc., Melbourne, Fla (1981)
Fefferman, C., Phong, D.H.: Subelliptic eigenvalue problems. In: Beckner, W., Calderón, A.P., Fefferman, R., Jones P.W. (eds.) Conference on Harmonic Analysis in Honor of Antoni Zygmund, vol. II (Chicago, Ill., 1981). Wadsworth Math. Ser., Wadsworth, Belmont, CA, pp. 590–606 (1983)
Folland, G.B.: The tangential Cauchy-Riemann complex on spheres. Trans. Amer. Math. Soc. 171, 83–133 (1972)
Hall, B.C.: Lie Groups, Lie Algebras, and Representations, Graduate Texts in Mathematics, vol. 222. Springer-Verlag, New York (2003)
Hebisch, W.: Functional calculus for slowly decaying kernels, preprint (1995)
Hebisch, W.: Multiplier theorem on generalized Heisenberg groups. Colloq. Math. 65(2), 231–239 (1993)
Johnson, K.D., Wallach, N.R.: Composition series and intertwining operators for the spherical principal series. I. Trans. Amer. Math. Soc. 229, 137–173 (1977)
Martini, A., Müller, D., Nicolussi Golo, S.: Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type, preprint (2018). arXiv:1812.02671
Martini, A.: Spectral multipliers on Heisenberg-Reiter and related groups. Ann. Mat. Pura Appl. 194(4), 1135–1155 (2015)
Martini, A.: Joint functional calculi and a sharp multiplier theorem for the Kohn Laplacian on spheres. Math. Z. 286, 1539–1574 (2017)
Martini, A., Müller, D.: Spectral multiplier theorems of Euclidean type on new classes of \(2\)-step stratified groups. Proc. Lond. Math. Soc. (3) 109(5), 1229–1263 (2014)
Martini, A., Müller, D.: Spectral multipliers on \(2\)-step groups: topological versus homogeneous dimension. Geom. Funct. Anal. 26(2), 680–702 (2016)
Melrose, R.: Propagation for the wave group of a positive subelliptic second-order differential operator. In: Mizohata, S. (ed.) Hyperbolic Equations and Related Topics (Katata/Kyoto, 1984), pp. 181–192. Academic Press, Boston (1986)
Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence, RI (2002)
Müller, D., Stein, E.M.: On spectral multipliers for Heisenberg and related groups. J. Math. Pures Appl. (9) 73(4), 413–440 (1994)
Nagel, A., Rudin, W.: Moebius-invariant function spaces on balls and spheres. Duke Math. J. 43(4), 841–865 (1976)
Pajas, P., Raçzka, R.: Degenerate representations of the symplectic groups. I. The compact group. J. Math. Phys. 9, 1188–1201 (1968)
Seeger, A., Sogge, C.D.: On the boundedness of functions of (pseudo-) differential operators on compact manifolds. Duke Math. J. 59(3), 709–736 (1989)
Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Cowling was supported by the Australian Research Council, through grant DP140100531. Martini is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Müller was supported by the Deutsche Forschungsgemeinschaft, through grant MU 761/11-1.
Rights and permissions
About this article
Cite this article
Ahrens, J., Cowling, M.G., Martini, A. et al. Quaternionic spherical harmonics and a sharp multiplier theorem on quaternionic spheres. Math. Z. 294, 1659–1686 (2020). https://doi.org/10.1007/s00209-019-02313-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-019-02313-w