Existence of non-contractible periodic orbits for homeomorphisms of the open annulus


In this article we consider homeomorphisms of the open annulus \(\mathbb {A}=\mathbb {R}/\mathbb {Z}\times \mathbb {R}\) which are isotopic to the identity and preserve a Borel probability measure of full support, focusing on the existence of non-contractible periodic orbits. Assume f is such homeomorphism such that the connected components of the set of fixed points of f are all compact. Further assume that there exists \(\check{f}\) a lift of f to the universal covering of \(\mathbb {A}\) such that the set of fixed points of \(\check{f}\) is non-empty and that this set projects into an open topological disk of \(\mathbb {A}\). We prove that, in this setting, one of the following two conditions must be satisfied: (1) f has non-contractible periodic points of arbitrarily large periodic, or (2) for every compact set K of \(\mathbb {A}\) there exists a constant M (depending on the compact set) such that, if \(\check{z}\) and \(\check{f}^n(\check{z})\) project on K, then their projections on the first coordinate have distance less or equal to M.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    In the whole text “transverse” will mean “positively transverse”.


  1. 1.

    Addas-Zanata, S.: Uniform bounds for diffeomorphisms of the torus and a conjecture of Boyland. J. Lond. Math. Soc. (2) 91, 537–553 (2015)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Béguin, F., Crovisier, S., Le Roux, F.: Fixed point sets of isotopies on surfaces. e-print arXiv:1610.00686. To appear in J. Eur. Math. Soc. (2016)

  3. 3.

    Bonatti, C., Crovisier, S., Wilkinson, A.: \(C^1\)-generic conservative diffeomorphisms have trivial centralizer. J. Mod. Dyn. 2(2), 359–373 (2008)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Boyland, P., de Carvalho, A., Hall, T.: New rotation sets in a family of torus homeomorphisms. Invent. Math. 204(3), 895–937 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Brouwer, L.E.: Beweis des ebenen Translationssatzes. Math. Ann. 72, 37–54 (1912)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Brown, M.: Homeomorphisms of two-dimensional manifolds. Houston J. Math. 11(4), 455–469 (1985)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Conejeros, J.: The local rotation set is an interval. Ergod. Theory Dyn. Syst. 38, 2571–2617 (2018)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Dávalos, P.: On annular maps of the torus and sublinear diffusion. J. Inst. Math. Jussieu 17, 913–978 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Franks, J., The rotation set and periodic points for torus homeomorphisms. Dynam. Sys. and chaos, vol 1 (Hachioji, 1994), World Sci. Publ. River Edge, NJ, pp. 41–48 (1995)

  10. 10.

    Franks, J.: Recurrence and fixed points of surface homeomorphisms. Ergod. Th. and Dynam. Sys., \({\bf 8}^{*}\), no. Charles Conley Memorial Issue, pp. 99-107 (1988)

  11. 11.

    Franks, J.: Area preserving homeomorphisms of open surfaces of genus zero. N. Y. J. Math. 2, 1–19 (1996)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Ginzburg, V.L., Gürel, B.Z.: Non-contractible periodic orbits in Hamiltonian dynamics on closed symplectic manifolds. Compos. Math. 152(9), 1777–1799 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Guelman, N., Koropecki, A., Tal, F.A.: Rotation sets with nonempty interior and transitivity in the universal covering. Ergod. Theory Dyn. Syst. 35, 883–894 (2015)

    Article  Google Scholar 

  14. 14.

    Gürel, B.Z.: On non-contractible periodic orbits of Hamiltonian diffeomorphisms. Bull. Lond. Math. Soc. 45(6), 1227–1334 (2013)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Haefliger, A., Reeb, G.: Variétés (non séparées) à une dimension et structures feuilletées du plan. Enseign. Math. (2) 3, 107–125 (1957)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Jaulent, O.: Existence d’un feuilletage positivement transverse à un homéomorphisme de surface. Annales de l’Institut Fourier 64(4), 1441–1476 (2014)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Kocsard, A.: On the dynamics of minimal homeomorphisms of \(\mathbb{T}^{2}\) which are not pseudo-rotations, (2016). e-print arXiv:1611.03784

  18. 18.

    Kocsard, A., Koropecki, A.: A mixing-like property and inexistence of invariant foliations for minimal diffeomorphisms of the \(2\)-torus. Proc. Am. Math. Soc. 137(10), 3379–3386 (2009)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Koropecki, A., Passeggi, A., Sambarino, M.: The Franks-Misiurewicz conjecture for extensions of irrational rotations, (2016). e-print arXiv:1611.05498

  20. 20.

    Koropecki, A., Tal, F.A.: Stricty toral dynamics. Invent. Math. 196(2), 339–381 (2014)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Koropecki, A., Tal, F.A.: Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusion. Proc. Am. Math. Soc. 142(10), 3483–3490 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Koropecki, A., Tal, F.A.: Fully essential dynamics for area-preserving surface homeomorphisms. Ergod. Theory Dyn. Syst. (5) 38, 1791–1836 (2018)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Koropecki, A., Le Calvez, P., Tal, F.A.: A triple boundary lemma for surface homeomorphisms. Proc. Am. Math. Soc. 147, 681–686 (2019)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Le Calvez, P.: Une version feuilletée du théorème de translation de Brouwer. Comment. Math. Helv. 79, 229–259 (2004)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Le Calvez, P.: Une version feuilletée équivariante du théorème de translation de Brouwer. Publ. Math. Inst. Hautes Études Sci. 102, 1–98 (2005)

    Article  Google Scholar 

  26. 26.

    Le Calvez, P., Tal, F.A.: Forcing theory for transverse trajectories of surface homeomorphisms. Invent. Math. 212, 619–729 (2018)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Llibre, J., MacKay, R.S.: Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity. Ergod. Theory Dyn. Syst. 11(1), 115–128 (1991)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Misiurewicz, M., Ziemian, K.: Rotation sets for maps of tori. J. Lond. Math. Soc. (2) 40, 490–506 (1989)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Newhouse, S., Palis, J., Takens, F.: Bifurcations and stability of families of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 57, 5–71 (1983)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Tal, F.A.: On non-contractible periodic orbits for surface homeomorphisms. Ergod. Theory Dyn. Syst. 36(5), 1644–1655 (2016)

    MathSciNet  Article  Google Scholar 

Download references


We are very grateful for Patrice Le Calvez, whose several suggestions helped to improve the exposition of the paper and to greatly simplify some proofs.

Author information



Corresponding author

Correspondence to Jonathan Conejeros.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by CNPq-Brasil. The second author was partially supported by Fapesp, CNPq-Brasil and CAPES.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conejeros, J., Tal, F.A. Existence of non-contractible periodic orbits for homeomorphisms of the open annulus. Math. Z. 294, 1413–1439 (2020). https://doi.org/10.1007/s00209-019-02309-6

Download citation