Mathematische Zeitschrift

, Volume 292, Issue 1–2, pp 473–497 | Cite as

On convergence criteria for the coupled flow of Li–Yuan–Zhang

  • Teng Fei
  • Bin Guo
  • Duong H. PhongEmail author


A one-parameter family of coupled flows depending on a parameter \(\kappa >0\) is introduced which reduces when \(\kappa =1\) to the coupled flow of a metric \(\omega \) with a (1, 1)-form \(\alpha \) due recently to Y. Li, Y. Yuan, and Y. Zhang. It is shown in particular that, for \(\kappa \not =1\), estimates for derivatives of all orders would follow from \(C^0\) estimates for \(\omega \) and \(\alpha \). Together with the monotonicity of suitably adapted energy functionals, this can be applied to establish the convergence of the flow in some situations, including on Riemann surfaces. Very little is known as yet about the monotonicity and convergence of flows in presence of couplings, and conditions such as \(\kappa \not =1\) seem new and may be useful in the future.



  1. 1.
    Becker, K., Becker, M., Schwarz, J.H.: String Theory and M Theory. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  2. 2.
    Chen, X.-X., Cheng, J.: On the constant scalar curvature Kähler metrics, apriori estimates (2017). arXiv:1712.06697
  3. 3.
    Chen, X.-X., Cheng, J.: On the constant scalar curvature Kähler metrics, existence results (2018). arXiv:1801.00656
  4. 4.
    Chen, X.-X., Cheng, J.: On the constant scalar curvature Kähler metrics, general automorphism group (2018). arXiv:1801.05907
  5. 5.
    Chow, B.: The Ricci flow on the \(2\)-sphere. J. Differ. Geom. 33(2), 325–334 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fei, T., Guo, B., Phong, D.H.: Parabolic dimensional reductions of 11D supergravity (2018). arXiv:1806.00583
  7. 7.
    Fei, T., Huang, Z., Picard, S.: The anomaly flow over Riemann surfaces (2017). arXiv:1711.08186
  8. 8.
    Guo, B., Huang, Z., Phong, D.H.: Pseudo-locality for a coupled Ricci flow. Commun. Anal. Geom. 26(3), 585–626 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hamilton, R.S.: The Ricci flow on surfaces. In: Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., vol. 71, pp. 237 – 262. Amer. Math. Soc. (1988)Google Scholar
  10. 10.
    Horava, P., Witten, E.: Heterotic and type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506–524 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, Y.: Generalized Ricci flow I: higher derivative estimates for compact manifolds. Anal. PDE 5(4), 747–775 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, Y., Yuan, Y., Zhang, Y.: A new geometric flow over Kähler manifolds. Commun. Anal. Geom. (2018)Google Scholar
  13. 13.
    Lieberman, G.M.: Second Order Parabolic Differential Equations, p. xii+439. World Scientific, Singapore (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    List, B.: Evolution of an extended Ricci flow system. Commun. Anal. Geom. 16(5), 1007–1048 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mabuchi, T.: Some symplectic geometry on compact Kähler manifolds I. Osaka J. Math. 24, 227–252 (1987)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Müller, R.: Ricci flow coupled with harmonic map flow. Ann. Sci. Éc. Norm. Supér. (4) 45(1), 101–142 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). arXiv:math/0211159
  18. 18.
    Phong, D.H., Sesum, N., Sturm, J.: Multiplier ideal sheaves and the Kähler–Ricci flow. Commun. Anal. Geom. 15(3), 613–632 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler–Ricci flow and the \({\bar{\partial }}\)-operator on vector fields. J. Differ. Geom. 81(3), 631–647 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Phong, D.H., Picard, S., Zhang, X.W.: New curvature flows in complex geometry. Surv. Differ. Geom. 22(1), 331–364 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Phong, D.H., Picard, S., Zhang, X.W.: Geometric flows and Strominger systems. Math. Z. 288(1–2), 101–113 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Struwe, M.: Curvature flows on surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(2), 247–274 (2002)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Townsend, P.: The eleven-dimensional supermembrane revisited. Phys. Lett. B 350, 184–188 (1995)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Trudinger, N.S., Wang, X.J.: The affine Plateau problem. J. Am. Math. Soc. 18(2), 253–289 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)CrossRefzbMATHGoogle Scholar
  26. 26.
    Zhang, Q.S.: A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. (2007). zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations