A 2-Calabi–Yau realization of finite-type cluster algebras with universal coefficients

Abstract

We categorify various finite-type cluster algebras with coefficients using completed orbit categories associated to Frobenius categories. Namely, the Frobenius categories we consider are the categories of finitely generated Gorenstein projective modules over the singular Nakajima category associated to a Dynkin diagram and their standard Frobenius quotients. In particular, we are able to categorify all finite-type skew-symmetric cluster algebras with universal coefficients and finite-type Grassmannian cluster algebras. Along the way, we classify the standard Frobenius models of a certain family of triangulated orbit categories which include all finite-type n-cluster categories, for all integers \(n\ge 1\).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    For the definition of quiver mutation and generalities on cluster algebras the reader can consult [14].

References

  1. 1.

    Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier 59(6), 2525–2590 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Graduate Texts in Mathematics, vol. 13, 2nd edn. Springer, New York (1974)

    Book  MATH  Google Scholar 

  3. 3.

    Asashiba, H.: A generalization of Gabriel’s Galois covering functors and derived equivalences. J. Algebra 334(1), 109–149 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. 86(1), 111–152 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bernstein, I.N., Gelfand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel’s theorem. Uspechi mat. Nauk. 28, 19–33 (1973)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Bondal, A.I., Kapranov, M.M.: Enhanced triangulated categories. Mat. Sb. 181(5), 669–683 (1990). Translation in Math. USSR-Sb. 70 no. 1, 93107

    MATH  Google Scholar 

  7. 7.

    Bongartz, K.: Algebras and quadratic forms. J. Lond. Math. Soc. (2) 28, 461–469 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Buan, A.B., Marsh, R.J., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Buan, A.B., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi–Yau categories and unipotent groups. Compos. Math. 145, 1035–1079 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (\(A_n\)-case). Trans. Am. Math. Soc. 358, 1347–1364 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Demonet, L., Iyama, O.: Lifting preprojective algebras to orders and categorifying partial flag varieties. Algebra Number Theory 10(7), 1527–1580 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Demonet, L., Luo, X.: Ice quivers with potentials associated with triangulations and Cohen–Macaulay modules over orders. Trans. Am. Math. Soc. 368(6), 4257–4293 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Drinfeld, V.: DG quotients of DG categories. J. Algebra 272(2), 643–691 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Fomin, S., Zelevinsky, A.: Clusters algebras IV: coefficients. Compos. Math. 143, 112–164 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. Ann. Math. 158, 977–1018 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Fu, C., Keller, B.: On cluster algebras with coefficients and 2-Calabi–Yau categories. Trans. Am. Math. Soc. 362(2), 859–895 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Gabriel, P.: Auslander–Reiten Sequences and Representation-Finite Algebras, Representation Theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), pp. 1–71. Springer, Berlin (1980)

    Google Scholar 

  19. 19.

    Gabriel, P., Roiter, A.V.: Representations of Finite-Dimensional Algebras. Encyclopaedia of Mathematical Sciences, vol. 73. Springer, Berlin (1992)

    Google Scholar 

  20. 20.

    Geiss, C., Leclerc, B., Schröer, J.: Partial flag varieties and preprojective algebras. Ann. Inst. Fourier (Grenoble) 58(3), 825–876 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  22. 22.

    Happel, D.: On the derived category of a finite-dimesional algebra. Comment. Math. Helv. 62(3), 339–389 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math. 172, 117–168 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Jensen, B., King, A., Su, X.: A categorification of Grassmannian cluster algebras. Proc. Lond. Math. Soc. (3) 113(2), 185–212 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Keller, B.: On differential graded categories. In: International Congress of Mathematicians, vol. 2, pp. 151–190. European Mathematical Society, Zurich (2006)

  26. 26.

    Keller, B.: On triangulated orbit categories. Doc. Math. 10, 551–581 (2005)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi–Yau. Adv. Math. 211(1), 123–151 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Keller, B., Scherotzke, S.: Graded quiver varieties and derived categories. J. Reine Angew. Math. 713, 85–127 (2016)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Krause, H.: Krull-Schmidt categories and projective covers. Expo. Math. 33(4), 535–549 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Nájera Chávez, A.: On Frobenius (completed) orbit categories. Algebr. Represent. Theory 20(4), 1007–1027 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001). (electronic)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Nakanishi, T., Zelevinsky, A.: On tropical dualities in cluster algebras. In: Proceedings of Representation Theory of Algebraic Groups and Quantum Groups, 10. Contemp. Math. 565, 217–226 (2012)

  33. 33.

    Neeman, A.: The derived category of an exact category. J. Algebra 135(2), 388–394 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Palu, Y.: Cluster characters for 2-Calabi–Yau triangulated categories. Ann. Inst. Fourier (Grenoble) 58(6), 2221–2248 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Qin, F.: Quantum groups via cyclic quiver varieties I. Compos. Math. 152(2), 299–326 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Quillen, D.: Higher Algebraic \({K}\)-Theory. I, Algebraic \(K\)-Theory. I: Higher \(K\)-Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Lecture Notes in Mathematics, vol. 341, pp. 85–147. Springer, Berlin (1973)

    MATH  Google Scholar 

  37. 37.

    Reading, N.: Universal geometric cluster algebras. Math. Z. 277, 499–547 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Reading, N.: Universal geometric cluster algebras from surfaces. Trans. Am. Math. Soc. 366, 6647–6685 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Reading, N.: Universal geometric coefficients for the once-punctured torus. Sém. Lothar. Combin. 71, B71e (2013/14)

  40. 40.

    Riedtmann, Ch.: Algebren, Darstellungsköcher, Überlagerungen und Zurück. Comment. Math. Helv. 55(2), 199–224 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    Riedtmann, Ch.: Representation-Finite Self-Injective Algebras of Class \(A_n\), Representation Theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979). Lecture Notes in Mathematics, vol. 832, pp. 449–520. Springer, Berlin (1980)

    Google Scholar 

  42. 42.

    Ringel, C.M.: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984)

    MATH  Google Scholar 

  43. 43.

    Scherotzke, S.: Desingularization of quiver Grassmannians via Nakajima categories. Algebr. Represent. Theory 20(1), 231–243 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    Tabuada, G.: Une structure de catégorie de modéles de Quillen sur la catégorie des dg-catégories. C. R. Math. Acad. Sci. Paris 340(1), 15–19 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  45. 45.

    Tabuada, G.: On Drinfeld’s DG quotient. J. Algebra 323, 1226–1240 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alfredo Nájera Chávez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by CONACyT grant CB2016 no. 284621.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nájera Chávez, A. A 2-Calabi–Yau realization of finite-type cluster algebras with universal coefficients. Math. Z. 291, 1495–1523 (2019). https://doi.org/10.1007/s00209-019-02261-5

Download citation