Skip to main content
Log in

Classification of minimal representations of real simple Lie groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Based on an idea by Gan and Savin (Represent Theory 9:46–93, 2005), we give a classification of minimal representations of connected simple real Lie groups not of type A. Actually, we prove that there exist no new minimal representations up to infinitesimal equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barchini, L., Sepanski, M., Zierau, R.: Positivity of zeta distributions and small unitary representations. Contemp. Math. 398, 1–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Binegar, B., Zierau, R.: Unitarization of a singular representation of \({SO}(p, q)\). Commun. Math. Phys. 138, 245–258 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourbaki, N.: Groupes et algèbres de Lie, Chapitres \(4, 5\) et \(6\). Hermann, Paris (1968)

  4. Braverman, A., Joseph, A.: The minimal realization from deformation theory. J. Algebra 205, 13–36 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brylinski, R.: Geometric quantization of real minimal nilpotent orbits. Differ. Geom. Appl. 9(1–2), 5–58 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brylinski, R., Kostant, B.: Differential operators on conical Laglangian manifolds. In: Brylinski, J.L., Brylinski, R., Guillemin, V., Kac, V. (eds.) Lie Theory and Geometry: In Honor of Bertram Kostant, Progr. Math., vol. 123. Birkhäuser, Boston (1994)

    Chapter  Google Scholar 

  7. Brylinski, R., Kostant, B.: Minimal reprerentations of \({E}_6\), \({E}_7\), and \({E}_8\) and the generalized Capelli identity. Proc. Natl. Acad. Sci. USA 91(7), 2469–2472 (1994)

    Article  MATH  Google Scholar 

  8. Brylinski, R., Kostant, B.: Minimal representations, geometric quantization, and unitarity. Proc. Natl. Acad. Sci. USA 91(13), 6026–6029 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brylinski, R.: Kostant B (1995) Lagrangian models of minimal representations of \({E}_6\), \({E}_7\) and \({E}_8\). In: Gindikin, S., Lepowsky, J., Wilson, R. (eds.) Functional Analysis on the Eve of the 21st Century, Progr. Math., 131, vol. 1, pp. 13–63. Birkhäuser, Boston (1995)

    Google Scholar 

  10. Duflo, M.: Représentations unitaires irréductibles des groupes simples complexes de rang deux. Bull. Soc. Math. Fr. 107, 55–96 (1979)

    Article  MATH  Google Scholar 

  11. Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules. In: Representation Theory of Reductive Groups, Progr. Math., vol. 40, pp. 97–143. Birkhäuser, Boston (1983)

  12. Enright, T., Parthasarathy, R., Wallach, N., Wolf, J.: Unitary derived functor modules with small spectrum. Acta Math. 154(1–2), 105–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Folland, G.B.: Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton (1989)

    Google Scholar 

  14. Gan, W.T., Savin, G.: Uniqueness of Joseph ideal. Math. Res. Lett. 11, 589–597 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gan, W.T., Savin, G.: On minimal representations definitions and properties. Represent. Theory 9, 46–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garfinkle, D.: A new construction of the Joseph ideal. Ph.D. thesis, M.I.T. (1982)

  17. Goncharov, A.B.: Constructions of Weil representations of some simple Lie algebras. Funktsional. Anal. i Prilozhen 16(2), 70–71 (1982)

    Article  MathSciNet  Google Scholar 

  18. Gross, B., Wallach, N.: A distinguished family of unitary representations for the exceptional groups of real rank \(=\) \(4\). In: Brylinski, J.L., Brylinski, R., Guillemin, V., Kac, V. (eds.) Lie Theory and Geometry: In Honor of Bertram Kostant, Progr. Math., vol. 123, pp. 289–304. Birkhäuser, Boston (1994)

  19. Gross, B., Wallach, N.: On quaternionic discrete series representations, and their continuations. J. Reine Angew. Math. 481, 73–123 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Hilgert, J., Kobayashi, T., Möllers, J., Ørsted, B.: Fock model and Segal–Bargmann transform for minimal representations of Hermitian Lie groups. J. Funct. Anal. 263(11), 3492–3563 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hilgert, J., Kobayashi, T., Möllers, J.: Minimal representations via Bessel operators. J. Math. Soc. Jpn. 66(2), 349–414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, J.S.: Minimal representations, shared orbits, and dual pair correspondences. Int. Math. Res. Notices 1995(6), 309–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, J.S., Li, J.S.: Unipotent representations attached to spherical nilpotent orbits. Am. J. Math. 121(3), 497–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9. Springer, New York (1978)

    Google Scholar 

  25. Jakobsen, H.P.: Hermitian symmetric spaces and their unitary highest weight modules. J. Funct. Anal. 52(3), 385–412 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Joseph, A.: The minimal orbit in a simple Lie algebra and its associated maximal ideal. Ann. Sci. École. Norm. Sup. (4) 9(1), 1–29 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kazhdan, D.: The minimal representation of \({D}_{4}\). In: Connes, A., Duflo, M., Joseph, A., Rentschler, R. (eds.) Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progr. Math., vol. 92, pp. 125–158. Birkhäuser, Boston (1990)

  28. Kazhdan, D., Savin, G.: The smallest representation of simply laced groups. In: Gelbert, S., Howe, R., Sarnak, P. (eds.) Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday. Part I., Israel Math. Conf. Proc., vol. 2, pp. 209–223. Weizmann Science Press of Israel, Jerusalem (1990)

  29. Knapp, A.W.: Lie Groups Beyond an Introduction, Progr. Math., vol. 140, 2nd edn. Birkhäuser, Boston (2002)

    Google Scholar 

  30. Kobayashi, T.: Algebraic analysis of minimal representations. Publ. Res. Inst. Math. Sci. 47(2), 585–611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kobayashi, T., Mano, G.: The Schrödinger model for the minimal representation of the indefinite orthogonal group \({O}(p, q)\). Mem. Am. Math. Soc. 213, 1000 (2011)

    MATH  Google Scholar 

  32. Kobayashi, T., Ørsted, B.: Conformal geometry and branching laws for unitary representatins attached to minimal nilpotent orbits. C. R. Acad. Sci. Paris Sér. I Math. 326(8), 925–930 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of \({O}(p, q)\), I. Realization via conformal geometry. Adv. Math. 180, 486–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of \({O}(p, q)\). II. Branching laws. Adv. Math. 180, 513–550 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of \({O}(p, q)\), III. Ultrahyperbolic equations on \({\mathbb{R}}^{p-1, q-1}\). Adv. Math. 180, 551–595 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kobayashi, T., Oshima, Y.: Classification of symmetric pairs with discretely decomposable restrictions of \((\mathfrak{g}, k)\)-modules. J. Reine Angew. Math. 703, 201–223 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Kostant, B.: The vanishing scalar curvature and the minimal unitary representation of \({SO}(4,4)\). In: Connes, A., Duflo, M., Joseph, A., Rentschler, R. (eds.) Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progr. Math., vol. 92, pp. 85–124. Birkhäuser, Boston (1990)

    Google Scholar 

  38. Lepowsky, J., McCollum, G.W.: On the determination of irreducible modules by restriction to a subalgebra. Trans. Am. Math. Soc. 176, 45–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, J.S.: Minimal representations & reductive dual pairs. In: Representation theory of Lie groups (Park City, UT, 1998), IAS/Park City Math. Ser., vol. 8, pp. 293–340. Amer. Math. Soc., Providence (2000)

  40. Loke, H.Y., Savin, G.: The smallest representations of nonlinear covers of odd orthogonal groups. Am. J. Math. 130(3), 763–797 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Okuda, T.: Smallest complex nilpotent orbits with real points. J. Lie Theory 25(2), 507–533 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Sabourin, H.: Une représentation unipotente associée à l’orbite minimale: Le cas de \(so(4,3)\). J. Funct. Anal. 137(2), 394–465 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Salmasian, H.: Isolatedness of the minimal representation and minimal decay of exceptional groups. Manuscr. Math. 120(1), 39–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Torasso, P.: Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle. Duke Math. J. 90(2), 261–377 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vogan, D.: Singular unitary representations. In: Noncommutative harmonic analysis and Lie groups, Lecture Notes in Math., vol. 880, pp. 506–535. Springer, Berlin (1981)

  46. Vogan, D.: The unitary dual of \({G}_2\). Invent. Math. 116(1–3), 677–791 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to his advisor Prof. Toshiyuki Kobayashi for helpful comments and warm encouragement. The author expresses his sincere thanks to Dr. Yoshiki Oshima and Dr. Masatoshi Kitagawa for inspiring discussions. This work was supported by JSPS KAKENHI Grant Number 17J01075 and the Program for Leading Graduate Schools, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyoshi Tamori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamori, H. Classification of minimal representations of real simple Lie groups. Math. Z. 292, 387–402 (2019). https://doi.org/10.1007/s00209-019-02231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02231-x

Keywords

Mathematics Subject Classification

Navigation