Newton–Okounkov bodies on projective bundles over curves


In this article, we study Newton–Okounkov bodies on projective vector bundles over curves. Inspired by Wolfe’s estimates used to compute the volume function on these varieties, we compute all Newton–Okounkov bodies with respect to linear flags. Moreover, we characterize semi-stable vector bundles over curves via Newton–Okounkov bodies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    In other words, \(\mu _{\max }(E)=\sigma _1 \ge \cdots \ge \sigma _r=\mu _{\min }(E)\) can be viewed as the components of the vector \(\varvec{\sigma }=(\sigma _1,\ldots ,\sigma _r)=(\underbrace{\mu _\ell ,\ldots ,\mu _\ell }_{r_\ell \text { times}},\underbrace{\mu _{\ell -1},\ldots ,\mu _{\ell -1}}_{r_{\ell -1} \text { times}},\ldots ,\underbrace{\mu _1,\ldots ,\mu _1}_{r_1 \text { times}})\in \mathbb {Q}^r\).

  2. 2.

    In positive characteristic one should take into account iterates of the absolute Frobenius as in [2, 4]. It is worth mentioning that in positive characteristic the semistability of a vector bundle over a curve does not imply the semi-stability of its symmetric powers.

  3. 3.

    In fact, this statement remains true even if we do not assume that \(E\not \subseteq {\mathbf {B}}_+(\eta )\). See [15, Prop. 1.6].

  4. 4.

    Unlike Chen, we do not normalize the measure in order to have \(\lambda (\Delta _{r-1})=1\).

  5. 5.

    We note that if \(C\cong \mathbb {P}^1\) then all the slopes \(\mu _i=\mu (Q_i)\) are integer numbers and hence the inequality “\(>2g-1\)” becomes “\(\ge 0\)”.


  1. 1.

    Bădescu, L.: In: by V. Maşek., (ed.) Algebraic surfaces. Transl. from the Romanian. Springer, New York (2001)

  2. 2.

    Biswas, I., Hogadi, A., Parameswaran, A.J.: Pseudo-effective cone of Grassmann bundles over a curve. Geom. Dedicata 172, 69–77 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Boucksom, S.: Corps d’Okounkov. Séminaire Bourbaki 65, 1–38 (2012)

    Google Scholar 

  4. 4.

    Biswas, I., Parameswaran, A.J.: Nef cone of flag bundles over a curve. Kyoto J. Math. 54(2), 353–366 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Brion, M.: Lectures on the Geometry of Flag Varieties. Birkhäuser, Trends in Mathematics. Basel (2005)

    Book  Google Scholar 

  6. 6.

    Butler, D.C.: Normal generation of vector bundles over a curve. J. Differ. Geom. 39(1), 1–34 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Chen, H.: Computing volume function on projective bundle over a curve. Hodge theory and algebraic geometry, RIMS Kôkyûroku 1745, 169–182 (2011)

    Google Scholar 

  8. 8.

    Ein, L., Lazarsfeld, R., Mustaţă, M., Nakamaye, M., Popa, M.: Asymptotic invariants of base loci. Ann. Inst. Fourier 56(6), 1701–1734 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Ein, L., Lazarsfeld, R., Mustaţă, M., Nakamaye, M., Popa, M.: Restricted volumes and base loci of linear series. Am. J. Math. 131(3), 607–651 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Fulton, W.: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 2. Berlin etc.: Springer-Verlag. XI, 470 p. DM 118 (1984)

  11. 11.

    Fulger, M.: The cones of effective cycles on projective bundles over curves. Math. Z. 269(1–2), 449–459 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Hartshorne, R.: Ample vector bundles on curves. Nagoya Math. J. 43, 73–89 (1971)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Jow, S.-Y.: Okounkov bodies and restricted volumes along very general curves. Adv. Math. 223(4), 1356–1371 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Kaveh, K., Khovanskii, A.G.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176(2), 925–978 (2012)

  15. 15.

    Küronya, A., Lozovanu, V.: Positivity of line bundles and Newton-Okounkov bodies. arXiv:1506.06525 (2015)

  16. 16.

    Küronya, A., Lozovanu, V., Maclean, C.: Convex bodies appearing as Okounkov bodies of divisors. Adv. Math. 229(5), 2622–2639 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Lazarsfeld, R.: Positivity in Algebraic Geometry, I & II, vol. 48 & 49. Springer, Berlin (2004)

  18. 18.

    Lesieutre, J.: The diminished base locus is not always closed. Compos. Math. 150(10), 1729–1741 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. 42(5), 783–835 (2009)

  20. 20.

    Le Potier, J.: Lectures on Vector Bundles. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  21. 21.

    Manivel, L.: Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence. Société Mathématique de France, Paris (1998)

    MATH  Google Scholar 

  22. 22.

    Muñoz, R., Di Sciullo, F., L. E., : Solá Conde. On the existence of a weak Zariski decomposition on projectivized vector bundles. Geom. Dedicata 179, 287–301 (2015)

  23. 23.

    Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety. Algebraic geometry, Proc. Symp., Sendai/Jap. 1985, Adv. Stud. Pure Math. 10, 449-476 (1987)

  24. 24.

    Nakayama, N.: Zariski-decomposition and abundance. Mathematical Society of Japan, Tokyo (2004)

    Book  MATH  Google Scholar 

  25. 25.

    Okounkov, A.: Brunn-Minkowski inequality for multiplicities. Invent. Math. 125(3), 405–411 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Okounkov, A.: Why would multiplicities be log-concave? In: The orbit method in geometry and physics. In honor of A. A. Kirillov. Papers from the international conference, Marseille, France, December 4–8, 2000, pp. 329–347. Birkhäuser, Boston (2003)

  27. 27.

    Ramanan, S., Ramanathan, A.: Some remarks on the instability flag. Tohoku Math. J. 2(36), 269–291 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Wolfe, A.: Asymptotic Invariants of Graded Systems of Ideals and Linear Systems on Projective Bundles. Ph.D. Thesis, University of Michigan (2005)

Download references


I would like to express my gratitude to my thesis supervisors, Stéphane Druel and Catriona Maclean, for their advice, helpful discussions and encouragement throughout the preparation of this article. I also thank Bruno Laurent, Laurent Manivel and Bonala Narasimha Chary for fruitful discussions. Finally, I would like to thank the anonymous referee for a very helpful and detailed report.

Author information



Corresponding author

Correspondence to Pedro Montero.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montero, P. Newton–Okounkov bodies on projective bundles over curves. Math. Z. 291, 1357–1379 (2019).

Download citation

Mathematics Subject Classification

  • 14C20
  • 14H60
  • 14M99