Advertisement

Simultaneous Kummer congruences and \({\mathbb {E}}_\infty \)-orientations of KO and tmf

  • Niko Naumann
  • Johannes Sprang
Article
  • 17 Downloads

Abstract

Building on results of Ando, Hopkins and Rezk, we show the existence of uncountably many \({\mathbb {E}}_\infty \)-String orientations of real K-theory KO and of topological modular forms tmf, generalizing the \(\hat{A}\)- (resp. the Witten) genus. Furthermore, the obstruction to lifting an \({\mathbb {E}}_\infty \)-String orientations from KO to tmf is identified with a classical Iwasawa-theoretic condition. The common key to all these results is a precise understanding of the classical Kummer congruences, imposed for all primes simultaneously. This result is of independent arithmetic interest.

Mathematics Subject Classification

55P42 55P43 55P50 11A07 

Notes

Acknowledgements

The unpublished PhD thesis [11] of Christian Nerf contains preliminary observations on the problems addressed here. The second author would like to thank Christian Nerf. It was his PhD thesis which drew his attention to the set of problems studied in this paper. He is also grateful for remarks and comments by Uli Bunke, Thomas Nikolaus and Michael Völkl. Last but not least, he would like to thank Guido Kings for introducing him to the beautiful subject of p-adic interpolation. The first author thanks Charles Rezk for suggesting Theorem 3.4.1. We also thank an anonymous referee for helpful comments improving the readability.

References

  1. 1.
    Adams, J.F.: Infinite Loop Spaces. Annals of Mathematics Studies, vol. 90. University of Tokyo Press, Tokyo (1978). (Princeton University Press, Princeton)Google Scholar
  2. 2.
    Ando, M., Hopkins, M. J., Rezk, C.: Multiplicative Orientations of KO-theory and of the Spectrum of Topological Modular Forms, pp. 1–44 (2010). Available at http://www.math.uiuc.edu/~mando/node1.html (pre-print)
  3. 3.
    Atiyah, M .F., Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3–38 (1964)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Conrad, K.: The digit principle. J. Number Theory 84(2), 230–257 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Douglas, C.L., Francis, J., Henriques, A.G., Hill, M.A. (eds.): Topological Modular Forms, Mathematical Surveys and Monographs, vol. 201. American Mathematical Society, Providence (2014)Google Scholar
  6. 6.
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. Lecture Notes in Math., vol. 349, pp. 143–316Google Scholar
  7. 7.
    Hill, M., Lawson, T.: Topological modular forms with level structure. Invent. Math. 203(2), 359–416 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hopkins, M. J.: Algebraic topology and modular forms. In: Proceedings of the International Congress of Mathematicians, vol. I (Beijing, 2002), Higher Ed. Press, Beijing, pp. 291–317 (2002)Google Scholar
  9. 9.
    Joachim, M.: Higher Coherences for Equivariant K-theory, Structured Ring Spectra, volume 315 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, pp. 87–114 (2004)Google Scholar
  10. 10.
    Lucas, E.: Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier. Bull. Soc. Math. France 6, 49–54 (1878)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nerf, Ch.: Multiplicative string orientations of p-local and p-complete real K-theory, Ph.D. thesis, University of Regensburg, July (2014)Google Scholar
  12. 12.
    Serre, J-P.: Endomorphismes complètement continus des espaces de Banach \(p\)-adiques. Inst. Hautes Études Sci. Publ. Math. 12, 69–85 (1962)Google Scholar
  13. 13.
    Serre, J.-P.: A Course in Arithmetic. Springer-Verlag, New York-Heidelberg (1973) (Translated from the French, p. 7. Graduate Texts in Mathematics) CrossRefGoogle Scholar
  14. 14.
    Serre, J-P.: Formes modulaires et fonctions zêta \(p\)-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972). Lecture Notes in Math., vol. 350. Springer, Berlin, pp. 191–268 (1973)Google Scholar
  15. 15.
    Schneider, P., Teitelbaum, J.: \(p\)-adic Fourier theory. Doc. Math. 6, 447–481 (2001)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Washington, L.C.: Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in Mathematics, vol. 83. Springer-Verlag, New York (1997)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations