Skip to main content
Log in

Equimultiplicity in Hilbert–Kunz theory

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study further the properties of Hilbert–Kunz multiplicity as a measure of singularity. This paper develops a theory of equimultiplicity for Hilbert–Kunz multiplicity and applies it to study the behavior of Hilbert–Kunz multiplicity on the Brenner–Monsky hypersurface. A number of applications follows, in particular we show that Hilbert–Kunz multiplicity attains infinitely many values and that equimultiple strata may not be locally closed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Neil Epstein informed me that a more general change of limits formula was independently obtained in his joint work with Yongwei Yao.

References

  1. Aberbach, I.M., Enescu, F.: Lower bounds for Hilbert–Kunz multiplicities in local rings of fixed dimension. Mich. Math. J. 57, 1–16 (2008). Special volume in honor of Melvin Hochster

    Article  MathSciNet  MATH  Google Scholar 

  2. Aberbach, I.M., Hochster, M., Huneke, C.: Localization of tight closure and modules of finite phantom projective dimension. J. Reine Angew. Math. 434, 67–114 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Bierstone, E., Milman, P.D.: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128(2), 207–302 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blickle, M., Enescu, F.: On rings with small Hilbert–Kunz multiplicity. Proc. Am. Math. Soc. 132(9), 2505–2509 (2004). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, H., Monsky, P.: Tight closure does not commute with localization. Ann. Math. (2) 171(1), 571–588 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, H., Li, J., Miller, C.: A direct limit for limit Hilbert–Kunz multiplicity for smooth projective curves. J. Algebra 372, 488–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dinh, T.T.: Associated primes of the example of Brenner and Monsky. Commun. Algebra 41(1), 109–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Epstein, N.: A tight closure analogue of analytic spread. Math. Proc. Camb. Philos. Soc. 139(2), 371–383 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Epstein, N., Vraciu, A.: A length characterization of \(*\)-spread. Osaka J. Math. 45(2), 445–456 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Hochster, M., Huneke, C.: Tight closure, invariant theory, and the Briançon–Skoda theorem. J. Am. Math. Soc. 3(1), 31–116 (1990)

    MATH  Google Scholar 

  11. Hochster, M., Huneke, C.: \(F\)-regularity, test elements, and smooth base change. Trans. Am. Math. Soc. 346(1), 1–62 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Hochster, M., Huneke, C.: Localization and test exponents for tight closure. Mich. Math. J. 48, 305–329 (2000). Dedicated to William Fulton on the occasion of his 60th birthday

    Article  MathSciNet  MATH  Google Scholar 

  13. Huneke, C., Yao, Y.: Unmixed local rings with minimal Hilbert–Kunz multiplicity are regular. Proc. Am. Math. Soc. 130(3), 661–665 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kunz, E.: Characterizations of regular local rings of characteristic \(p\). Am. J. Math. 91, 772–784 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kunz, E.: On Noetherian rings of characteristic \(p\). Am. J. Math. 98(4), 999–1013 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lech, C.: On the associativity formula for multiplicities. Ark. Mat. 3, 301–314 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lipman, J.: Equimultiplicity, reduction, and blowing up. In: Commutative algebra (Fairfax, Va., 1979), Lecture Notes in Pure and Appl. Math., vol. 68, pp. 111–147. Dekker, New York, (1982)

  18. Ma, L.: Lech’s conjecture in dimension three. Adv. Math. 322, 940–970 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Matsumura, H.: Commutative algebra, Mathematics Lecture Note Series, vol. 56, 2nd edn. Benjamin Cummings Publishing Co., Inc., Reading (1980)

  20. Monsky, P.: The Hilbert–Kunz function. Math. Ann. 263(1), 43–49 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monsky, P.: Hilbert–Kunz functions in a family: line-\(S_4\) quartics. J. Algebra 208(1), 359–371 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Monsky, P.: Hilbert–Kunz functions in a family: point-\(S_4\) quartics. J. Algebra 208(1), 343–358 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nagata, M.: The theory of multiplicity in general local rings. In: Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, pp. 191–226. Science Council of Japan, Tokyo (1956)

  24. Rees, D.: Rings associated with ideals and analytic spread. Math. Proc. Camb. Philos. Soc. 89(3), 423–432 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shepherd-Barron, N.I.: On a problem of Ernst Kunz concerning certain characteristic functions of local rings. Arch. Math. (Basel), 31(6), 562–564 (1978/1979)

  26. Singh, A.K., Swanson, I.: Associated primes of local cohomology modules and of Frobenius powers. Int. Math. Res. Not. 33, 1703–1733 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smirnov, I.: Upper semi-continuity of the Hilbert-Kunz multiplicity. Compos. Math. 152(3), 477–488 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Trivedi, V.: Hilbert–Kunz multiplicity and reduction mod \(p\). Nagoya Math. J. 185, 123–141 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tucker, K.: \(F\)-signature exists. Invent. Math. 190(3), 743–765 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Watanabe, K., Yoshida, K.: Hilbert–Kunz multiplicity and an inequality between multiplicity and colength. J. Algebra 230(1), 295–317 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The results of this paper are a part of the author’s thesis written under Craig Huneke in the University of Virginia. I am indebted to Craig for his support and guidance. This project would not be possible without his constant encouragement. I also want to thank Mel Hochster and the anonymous referee who carefully read and helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Smirnov.

Additional information

Dedicated to Craig Huneke on the occasion of his 65th Birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, I. Equimultiplicity in Hilbert–Kunz theory. Math. Z. 291, 245–278 (2019). https://doi.org/10.1007/s00209-018-2082-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2082-5

Keywords

Mathematics Subject Classification

Navigation